\

AR :;."f'\\'

108

"
“""nl‘

f
i
Lt

1
‘llill“l 1““1.

- ll““
et
L bbb

“:ﬁhﬂ

‘:‘ﬂmi’l

T \

i ;;iﬂl\ |

Support

OSELAS Training
OSELAS . Development
OSELAS.Services

Quickstart Manual
OSELAS.BSP()
FriendlyARM mini2440

rPe\ngutromx

Pengutronix e. K.
Peiner Strafle 6-8
31137 Hildesheim

+49 (0)5121/206917 -0 (Fon)
+49 (0)5121/206917 - 55 55 (Fax)
info@pengutronix.de

© 2011 Pengutronix, Hildesheim - Rev. 1596/479

dlued j,uoQ

a0jiuopy AnoK uo yd1S pue SISH 3N %

Contents

I OSELAS Quickstart for

FriendlyARM mini2440 5

1 You have been warned 6
2 Getting a working Environment 7
2.1 Download Software Components 7
2.2 PTXdistInstallation e e e e e e e 7
2.2 MainPartsof PTXdist o e e e e e e 7

2.2.2 ExtractingtheSources 8

2.2.3 Prerequisites L e e e e e 9

2.2.4 Configuring PTXdist o 10

2.3 Toolchains e e e e e e e e 1
2.3.1 UsingExisting Toolchains o 1

2.3.2 BuildingaToolchain 12

2.3.3 Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Mini2440-2011.07.0 13

2.3.4 ProtectingtheToolchain 13

2.3.5 Building Additional Toolchains 13

3 Building a root filesystem for the mini2440 15
3.1 Extractingthe Board SupportPackage 15
3.2 Feature Dependend Configurations 16
3.2.1 Identify Your Mini2440 L e 16

3.2.2 Network Adaptions 16

3.2.3 Feature Adaptions e e 17

3.3 SelectingaUserland Configuration 18
3.4 SelectingaHardware Platform o 18

3.5 SelectingaToolchain e 19
3.6 BuildingtheRootFilesystem 19

3.7 Buildinganimage L 19
3.8 Deployingthe Mini2440 e 20
3.9 Updatingthe Mini2440 L e 24

4 Special Notes 26
4.1 AvailableKernelReleases e e e e e e e e 26
4.2 Available Userland Configuration o 26
4.2.1 Some details about the configs/ptxconfig.qt i i 26

4.3 Framebuffer e e e e 27
4.4 GPIO . . L e e e e e e e e e e e e e e e 27
4.4 GPIOUsageExample o o 27

4.5 [PCMaster o o e e e e e e e e e e e e 28
4.5.1 [2CDevice AT24C08 o o i e 28

[I?eBgutronlx 3

Contents

4.6 LEDS e e e e e e e e e e e e e e e 28
4.7 MMC/SD Card o e e e e e e e e e e e e e e e e e 29
4.8 Network e e e 29
4.9 SPIMaster o o o o e e e e e e e e e e e e e e 30
4.10 Touchscreen L . e e e e e e e e e e e e 30
4.10.1 Ifthe Touchscreendoesnotwork 31

411 LCDBacklight. o 31
4.12 USBHostControllerUnit e e e e e 31
413 Watchdog o 32
4.4 ADC o L e 32
4.5 Keypad e e e e e e e e 32
416 AUIO o e e e e e e e e e 33
4.7 USBDevice o o i i e 33
4.18 Getthe latest BSP Release forthe Mini2440 o i i it i e 34
4.19 Be Part of the Mini2440 BSP Development 34
4.20 Notes Aboutthe BootloaderBarebox e 34
4.20.1 Run-Time Environment e e e e e e e e e 34
4.20.2 How does the Partitioning Work in Barebox 35

4.21 Thanks o e e e e e e e e e e e 37
5 Document Revisions 38
6 Getting help 39
6.1 MailingLists e e e e e 39
6.1.1 AboutPTXdistin Particular o 39

6.1.2 About Embedded LinuxinGeneral, 39

6.2 NeWwSGroups . . . o v v v i e e e e e e e e e e e e e e e e e 39
6.2.1 About Linux in Embedded Environments oo 39
6.2.2 About General Unix/Linux Questions e 39

6.3 Chat/IRC e e e e e e e e e 40
6.4 FriendlyARM mini2440 specific MailingList 40
6.5 Commercial Support L e 40

[I?eBgutronlx 4

Part |

OSELAS Quickstart for
FriendlyARM mini2440

1 You have been warned

The Barebox bootloader and the Linux kernel contained in this board support package will modify your NAND
memory. This is important to know if you want to keep a way back to the previous usage. At least the bad block
marker maybe lost if you try to switch back to the old behaviour.

If you already used another recent kernel on your Mini2440, you can ignore this warning.
A word about using NAND memory for the bootloader and the filesystem:

NAND memory can be forgetful. That is why some kind of redundancy information is always required. This board
support package uses ECC (error-correcting code) checksums as redundancy information when the bootloader
and the Linux kernel are up and running.

This kind of redundancy information can repair one bit errors and detect two bit errors in a page of data. Its
very important to use ECC at least for the bootloader to ensure to bring up the Mini2440 successfully. But its
currently not done in the bootloader while bootstrapping. So, there is still a risk for long term use to fail booting
the Mini2440 from NAND. In this case the bootloader must be re-written making the Mini2440 booting again
from NAND.

In one of the next releases, ECC check and correction will be done while bootstrapping as well, to make the system
more reliable for long term use. But then one question will be still open: Does the hardware of the S3C2440 CPU
ECC check and correction for the very first page? | guess no, because the hardware has no idea, where the ECC
checksum is stored. So, maybe there is no 100 % reliable solution for long term users.

2 Getting a working Environment

2.1 Download Software Components

In order to follow this manual, some software archives are needed. There are several possibilities how to get
these: either as part of an evaluation board package or by downloading them from the Pengutronix web site.

The central place for OSELAS related documentation is http://www.oselas. com. This website provides all re-
quired packages and documentation (at least for software components which are available to the public).

To build OSELAS.BSP-Pengutronix-Mini2440-2011.07.0, the following archives have to be available on the de-
velopment host:

« ptxdist-2011.07.0.tar.bz2
» OSELAS.BSP-Pengutronix-Mini2440-2011.07.0.tar.gz

« OSELAS.Toolchain-2011.03.0.tar.bz2

If they are not available on the development system yet, it is necessary to get them.

2.2 PTXdist Installation

The PTXdist build system can be used to create a root filesystem for embedded Linux devices. In order to start
development with PTXdist it is necessary to install the software on the development system.

This chapter provides information about how to install and configure PTXdist on the development host.

2.2.1 Main Parts of PTXdist

The most important software component which is necessary to build an OSELAS.BSP() board support package
is the ptxdist tool. So before starting any work we’'ll have to install PTXdist on the development host.

PTXdist consists of the following parts:

The ptxdist Program: ptxdist is installed on the development host during the installation process. ptxdist is
called to trigger any action, like building a software packet, cleaning up the tree etc. Usually the ptxdist
program is used in a workspace directory, which contains all project relevant files.

A Configuration System: The config system is used to customize a configuration, which contains information
about which packages have to be built and which options are selected.

Patches: Due to the fact that some upstream packages are not bug free - especially with regard to cross compi-
lation - it is often necessary to patch the original software. PTXdist contains a mechanism to automatically
apply patches to packages. The patches are bundled into a separate archive. Nevertheless, they are nec-
essary to build a working system.

Féngutronlx 7

http://www.oselas.com

2 Getting a working Environment

Package Descriptions: For each software componentthere is a “recipe” file, specifying which actions have to be
done to prepare and compile the software. Additionally, packages contain their configuration sniplet for
the config system.

Toolchains: PTXdist does not come with a pre-built binary toolchain. Nevertheless, PTXdist itself is able to
build toolchains, which are provided by the OSELAS.Toolchain() project. More in-deep information about
the OSELAS.Toolchain() project can be found here: http://www.pengutronix.de/oselas/toolchain/
index_en.html

Board Support Package This is an optional component, mostly shipped aside with a piece of hardware. There
are various BSP available, some are generic, some are intended for a specific hardware.

2.2.2 Extracting the Sources

To install PTXdist, at least two archives have to be extracted:

ptxdist-2011.07.0.tar.bz2 The PTXdist software itself

ptxdist-2011.07.0-projects.tgz Generic projects (optional), can be used as a starting point for self-built projects.

The PTXdist packet has to be extracted into some temporary directory in order to be built before the installation,
for example the local/ directory in the user's home. If this directory does not exist, we have to create it and
change into it:

$ cd
$ mkdir local
$ cd local

Next step is to extract the archive:

$ tar -xjf ptxdist-2011.07.0.tar.bz2

and if required the generic projects:

$ tar -xzf ptxdist-2011.07.0-projects.tgz

If everything goes well, we now have a PTXdist-2011.07.0 directory, so we can change into it:

$ cd ptxdist-2011.07.0

$ 1s -1F

total 509

-rw-r--r--= 1 jb user 18361 Jul 12 01:18 COPYING
-rw-r--r--= 1 jb user 3914 Jul 12 01:18 CREDITS
-rw-r--r-- 1 jb user 115540 Jul 12 01:18 Changelog
-rw-r--r-- 1 jb user 57 Jul 12 ©1:18 INSTALL
-rw-r--r--= 1 jb user 2531 Jul 12 01:18 Makefile.in
-rw-r--r-— 1 jb user 4252 Jul 12 @1:18 README
-rw-r--r-- 1 jb user 63516 Jul 12 01:18 TODO
-rwxr-xr-x 1 jb user 28 Jul 12 01:18 autogen.sh*
drwxr-xr-x 2 jb user 72 Jul 12 01:18 bin/
drwxr-xr-x 10 jb user 296 Jul 12 01:18 config/
-rwxr-xr-x 1 jb user 212213 Jul 12 10:20 configurex
-rw-r--r--= 1 jb user 12515 Jul 12 01:18 configure.ac
drwxr-xr-x 10 jb user 248 Jul 12 01:18 generic/

drwxr-xr-x 217 jb user 7304 Jul 12 01:18 patches/

_ 8
Fengutromx

http://www.pengutronix.de/oselas/toolchain/index_en.html
http://www.pengutronix.de/oselas/toolchain/index_en.html

2 Getting a working Environment

drwxr-xr-x 2 jb user 1240 Jul 12 01:18 platforms/
drwxr-xr-x 4 jb user 112 Jul 12 01:18 plugins/
drwxr-xr-x 6 jb user 53048 Jul 12 01:18 rules/
drwxr-xr-x 8 jb user 912 Jul 12 01:18 scripts/
drwxr-xr-x 2 jb user 512 Jul 12 01:18 tests/

2.2.3 Prerequisites

Before PTXdist can be installed it has to be checked if all necessary programs are installed on the development
host. The configure script will stop if it discovers that something is missing.

The PTXdist installation is based on GNU autotools, so the first thing to be done now is to configure the packet:

$./configure

This will check your system for required components PTXdist relies on. If all required components are found the
output ends with:

[...]
checking whether /usr/bin/patch will work... yes

configure: creating ./config.status

config.status: creating Makefile

config.status: creating scripts/ptxdist_version.sh
config.status: creating rules/ptxdist-version.in

ptxdist version 2011.07.0 configured.
Using ’/usr/local’ for installation prefix.

Report bugs to ptxdist@engutronix.de

Without further arguments PTXdist is configured to be installed into /usr/local, which is the standard location
for user installed programs. To change the installation path to anything non-standard, we use the --prefix ar-
gument to the configure script. The --help option offers more information about what else can be changed for
the installation process.

The installation paths are configured in a way that several PTXdist versions can be installed in parallel. So if an
old version of PTXdist is already installed there is no need to remove it.

One of the most important tasks for the configure script is to find out if all the programs PTXdist depends on are
already present on the development host. The script will stop with an error message in case something is missing.
If this happens, the missing tools have to be installed from the distribution befor re-running the configure script.

When the configure script is finished successfully, we can now run

$ make

All program parts are being compiled, and if there are no errors we can now install PTXdist into it's final location.
In order to write to /usr/local, this step has to be performed as user root:

$ sudo make install
[enter password]

[...]

Féhgutronlx 9

2 Getting a working Environment

If we don't have root access to the machine it is also possible to install PTXdist into some other directory with
the —-prefix option. We need to take care that the bin/ directory below the new installation dir is added to our
$PATH environment variable (for example by exporting it in “/.bashrc).

The installation is now done, so the temporary folder may now be removed:

$cd../../
$ rm -fr local

2.2.4 Configuring PTXdist

When using PTXdist for the first time, some setup properties have to be configured. Two settings are the most
important ones: Where to store the source packages and if a proxy must be used to gain access to the world wide
web.

Run PTXdist's setup:

$ ptxdist setup

Due to PTXdist is working with sources only, it needs various source archives from the world wide web. If these
archives are not present on our host, PTXdist starts the wget command to download them on demand.

Proxy Setup

To do so, an internet access is required. If this access is managed by a proxy wget command must be adviced to
use it. PTXdist can be configured to advice the wget command automatically: Navigate to entry Proxies and enter
the required addresses and ports to access the proxy in the form:

<protocol>://<address>: <port>

Source Archive Location

Whenever PTXdist downloads source archives it stores these archives in a project local manner. If we are working
with more than one project, every project would download its own required archives. To share all source archives
between all projects PTXdist can be configured to use only one archive directory for all projects it handles: Nav-
igate to menu entry Source Directory and enter the path to the directory where PTXdist should store archives to
share between projects.

Generic Project Location

If we already installed the generic projects we should also configure PTXdist to know this location. If we already
did so, we can use the command ptxdist projectsto get a list of available projects and ptxdist clone to geta
local working copy of a shared generic project.

Navigate to menu entry Project Searchpath and enter the path to projects that can be used in such a way. Here
we can configure more than one path, each part can be delemited by a colon. For example for PTXdist's generic
projects and our own previous projects like this:

/usr/local/lib/ptxdist-2011.07.0/projects:/office/my_projects/ptxdist

Leave the menu and store the configuration. PTXdist is now ready for use.

_ 10
Fengutromx

2 Getting a working Environment

2.3 Toolchains

Before we can start building our first userland we need a cross toolchain. On Linux, toolchains are no monolithic
beasts. Most parts of what we need to cross compile code for the embedded target comes from the GNU Compiler
Collection, gcc. The gcc packet includes the compiler frontend, gcc, plus several backend tools (cc1, g++, Id etc.)
which actually perform the different stages of the compile process. gcc does not contain the assembler, so we
also need the GNU Binutils package which provides lowlevel stuff.

Cross compilers and tools are usually named like the corresponding host tool, but with a prefix - the GNU target.
For example, the cross compilers for ARM and powerpc may look like

e arm-softfloat-1linux-gnu-gcc

e powerpc-unknown-1linux-gnu-gcc
With these compiler frontends we can convert e.g. a C program into binary code for specific machines. So for
example if a C program is to be compiled natively, it works like this:

$ gcc test.c -o test

To build the same binary for the ARM architecture we have to use the cross compiler instead of the native one:

$ arm-softfloat-linux-gnu-gcc test.c -o test

Also part of what we consider to be the "toolchain” is the runtime library (libc, dynamic linker). All programs
running on the embedded system are linked against the libc, which also offers the interface from user space
functions to the kernel.

The compiler and libc are very tightly coupled components: the second stage compiler, which is used to build
normal user space code, is being built against the libcitself. Forexample, if the target does not contain a hardware
floating point unit, but the toolchain generates floating point code, it will fail. This is also the case when the
toolchain builds code for i686 CPUs, whereas the target is i586.

So in order to make things working consistently it is necessary that the runtime libc is identical with the libc the
compiler was built against.

PTXdist doesn’t contain a pre-built binary toolchain. Remember that it's not a distribution but a development
tool. But it can be used to build a toolchain for our target. Building the toolchain usually has only to be done
once. It may be a good idea to do that over night, because it may take several hours, depending on the target
architecture and development host power.

2.3.1 Using Existing Toolchains

If a toolchain is already installed which is known to be working, the toolchain building step with PTXdist may be
omitted.

The OSELAS.BoardSupport() Packages shipped for PTXdist have been tested with the OSE-
LAS.Toolchains() built with the same PTXdist version. So if an external toolchain is being used
which isn't known to be stable, a target may fail. Note that not all compiler versions and combi-
nations work properly in a cross environment.

Every OSELAS.BoardSupport() Package checks for its OSELAS.Toolchain it's tested against, so using a different
toolchain vendor requires an additional step:

Open the OSELAS.BoardSupport() Package menu with:

Féngutronlx n

2 Getting a working Environment

$ ptxdist platformconfig

and navigate to architecture ---> toolchainand check for specific toolchain vendor. Clear this entry to
disable the toolchain vendor check.

Preconditions an external toolchain must meet:

« it shall be built with the configure option --with-sysroot pointing to its own C libraries.

+ it should not support the multilib feature as this may confuse PTXdist which libraries are to select for the
root filesystem

If we want to check if our toolchain was built with the --with-sysroot option, we just run this simple command:

$ mytoolchain-gcc -v 2>&1 | grep with-sysroot

If this command does not output anything, this toolchain was not built with the --with-sysroot option and
cannot be used with PTXdist.

2.3.2 Building a Toolchain

PTXdist handles toolchain building as a simple project, like all other projects, too. So we can download the
OSELAS.Toolchain bundle and build the required toolchain for the OSELAS.BoardSupport() Package.

Building any toolchain of the OSELAS.Toolchain-2011.03 is tested with PTXdist-2011.03.0.
Pengutronix recommends to use this specific PTXdist to build the toolchain. So, it might be
essential to install more than one PTXdist revision to build the toolchain and later on the Board
Support Package if the latter one is made for a different PTXdist revision.

A PTXdist project generally allows to build into some project defined directory; all OSELAS.Toolchain projects
that come with PTXdist are configured to use the standard installation paths mentioned below.

All OSELAS.Toolchain projects install their result into /opt/OSELAS.Toolchain-2011.03/.

Usually the /opt directory is not world writeable. So in order to build our OSELAS.Toolchain
into that directory we need to use a root account to change the permissions. PTXdist detects
this case and asks if we want to run sudo to do the job for us. Alternatively we can enter:

mkdir /opt/OSELAS.Toolchain-2011.03

chown <username> /opt/OSELAS.Toolchain-2011.03

chmod a+rwx /opt/OSELAS.Toolchain-2011.03.

We recommend to keep this installation path as PTXdist expects the toolchains at /opt. Whenever we go to select
a platform in a project, PTXdist tries to find the right toolchain from data read from the platform configuration
settings and a toolchain at /opt that matches to these settings. But that's for our convenience only. If we decide
to install the toolchains at a different location, we still can use the toolchain parameter to define the toolchain to
be used on a per project base.

_ 12
Fengutromx

2 Getting a working Environment

2.3.3 Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Mini2440-2011.07.0

To compile and install an OSELAS.Toolchain we have to extract the OSELAS.Toolchain archive, change into the
new folder, configure the compiler in question and start the build.

The required compiler to build the OSELAS.BSP-Pengutronix-Mini2440-2011.07.0 board support package is
arm-v4t-linux-gnueabi_gcc-4.5.2_glibc-2.13_binutils-2.21_kernel-2.6.36-sanitized

So the steps to build this toolchain are:

In order to build any of the OSELAS.Toolchains, the host must provide the tool fakeroot. Other-
wise the message bash: fakeroot: command not found will occur and the build stops.

$ tar xf OSELAS.Toolchain-2011.03.0.tar.bz2

$ cd OSELAS.Toolchain-2011.03.0

$ ptxdist select ptxconfigs/
arm-v4t-linux-gnueabi_gcc-4.5.2_glibc-2.13_binutils-2.21_kernel-2.6.36-sanitized.ptxconfig

$ ptxdist go

At this stage we have to go to our boss and tell him that it's probably time to go home for the day. Even on
reasonably fast machines the time to build an OSELAS.Toolchain is something like around 30 minutes up to a
few hours.

Measured times on different machines:

Single Pentium 2.5 GHz, 2 GiB RAM: about 2 hours

Turion ML-34, 2 GiB RAM: about 1 hour 30 minutes

Dual Athlon 2.1 GHz, 2 GiB RAM: about 1 hour 20 minutes

Dual Quad-Core-Pentium 1.8 GHz, 8 GiB RAM: about 25 minutes

Another possibility is to read the next chapters of this manual, to find out how to start a new project.

When the OSELAS.Toolchain project build is finished, PTXdist is ready for prime time and we can continue with
our first project.

2.3.4 Protecting the Toolchain

All toolchain components are built with regular user permissions. In order to avoid accidential changes in the
toolchain, the files should be set to read-only permissions after the installation has finished successfully. Itis also
possible to set the file ownership to root. This is an important step for reliability, so it is highly recommended.

2.3.5 Building Additional Toolchains

The OSELAS.Toolchain-2011.03.0 bundle comes with various predefined toolchains. Refer the ptxconfigs/ folder
for other definitions. To build additional toolchains we only have to clean our current toolchain project, removing
the current selected_ptxconfiglink and creating a new one.

— 13
Fengutromx

2 Getting a working Environment

$ ptxdist clean

$ rm selected_ptxconfig

$ ptxdist select ptxconfigs/any_other_toolchain_def.ptxconfig
$ ptxdist go

All toolchains will be installed side by side architecture dependent into directory
/opt/0SELAS.Toolchain-2011.03/architecture_part
Different toolchains for the same architecture will be installed side by side version dependent into directory

/opt/0SELAS.Toolchain-2011.03/architecture_part/version_part.

14

3 Building a root filesystem for the mini2440

3.1 Extracting the Board Support Package

In order to work with a PTXdist based project we have to extract the archive first.

$ tar -zxf OSELAS.BSP-Pengutronix-Mini2440-2011.07.0.tar.gz
$ cd OSELAS.BSP-Pengutronix-Mini2440-2011.07.0

PTXdist is project centric, so now after changing into the new directory we have access to all valid components.

total 36

-rw-r--r-- 1 jbe ptx 1053 Jul 12 19:44 Changelog
-rw-r--r-- 1 jbe ptx 2330 May 31 21:15 FAQ
-rw-r--r-- 1 jbe ptx 177 May 31 21:15 README
drwxr-xr-x 3 jbe ptx 4096 Jul 12 19:44 configs
drwxr-xr-x 3 jbe ptx 4096 May 31 21:15 documentation
drwxr-xr-x 3 jbe ptx 4096 Jul 12 19:44 local_src
drwxr-xr-x 3 jbe ptx 4096 Jul 12 19:44 projectroot
drwxr-xr-x 2 jbe ptx 4096 Jun 5 13:58 protocol
drwxr-xr-x 2 jbe ptx 4096 Jul 12 19:44 rules

Notes about some of the files and directories listed above:

Changelog Here you can read what has changed in this release. Note: This file does not always exist.

documentation If this BSP is one of our OSELAS BSPs, this directory contains the Quickstart you are currenly
reading in.

configs A multiplatform BSP contains configurations for more than one target. This directory contains the plat-
form configuration files.

projectroot Contains files and configuration for the target’s runtime. A running GNU/Linux system uses many
text files for runtime configuration. Most of the time the generic files from the PTXdist installation will fit
the needs. But if not, customized files are located in this directory.

rules If something specialis required to build the BSP for the target it is intended for, then this directory contains
these additional rules.

patches If some special patches are required to build the BSP for this target, then this directory contains these
patches on a per package basis.

tests Contains test scripts for automated target setup.

— 15
Fengutromx

3 Building a root filesystem for the mini2440

3.2 Feature Dependend Configurations

The FriendlyARM Mini2440 comes in various incarnations. Mostly they differ in the NAND memory size, but also
other features may be present or not. Read the following sub-sections to adapt this board support package to
meet exactly your Mini2440 requirements.

Note: In this documentation the FriendlyARM Mini2440 with 64 MiB of NAND memory is the reference platform.
However, everything mentioned herein is also valid for Mini2440s shipped with more than 64 MiB of NAND.

3.2.1 ldentify Your Mini2440
The FriendlyARM Mini2440s are shipped with various NAND memory sizes. The smallest is a 64 MiB unit, the
largest one comes with 1 GiB of NAND memory.

As this kind of memory needs some special treatment depending on its internal layout, we must distinguish be-
tween them prior to generating any images. This board support package comes with two configurations:

+ platformconfig-NAND-64M for the Mini2440 with 64 MiB of NAND memory
- the NAND device is marked with the text K9F1208
+ platformconfig-NAND-128M for the Mini2440 with 128 MiB of NAND memory or more

- these NAND devices are marked with the text K9F1G08, K9F2G08 or K9F8G08.

This is important while performing the platform selection step in section 3.4. As this section references
the 64 MiB NAND configuration (platformconfig-NAND-64M), we must select the 128 MiB configuration
(platformconfig-NAND-128M) instead, if we are usinga NAND memory larger than 64 MiB.

Running a 64 MiB configuration on a 128 MiB (or above) Mini2440 will give us many confusing
error messages (the same the other way around).

What differs in both configurations:
« erase block size (16 kiB versus 128 kiB)
» JFFS2 root filesystem creation (needs different parameters)
+ count of spare blocks (important for NAND memory usage)

« partition sizes (due to different spare block counts)
3.2.2 Network Adaptions
The default network configurations for the bootloader and the Linux kernel are located in different files in this

board support package. These files must be changed in order to meet the local network requirements, to enable
the bootloader and the Linux kernel to communicate via network.

The network configuration can still be changed later on when the Mini244o0 is up and running.
Changing it prior the build is more for convenience.

_ 16
Fengutromx

3 Building a root filesystem for the mini2440

3.2.2.1 Bootloader Barebox

As there is no generic network setting available, some changes to our own network should be done prior building
the board support package.

To do so, we should open one of the following files with our favourite editor:

« configs/platform-friendlyarm-mini2440/barebox-64m-env/config if we are using a Mini2440 with 64
MiB NAND

« configs/platform-friendlyarm-mini244e/barebox-128m-env/config if we are using a Mini2440 with 128
MiB or larger NAND

These settings are relevant only for the bootloader. The file content will be the default settings later on, when
we are using the Mini2440. Default settings mean they can be permanently changed at run-time later on. But,
whenever the bootloader loses its environment it will fall back to the settings in this file. So, to avoid making
more changes at run-time than required, we should do the settings carefully here.

We can keep the ip=dhcp option enabled. This requires a DHCP server in the network to be able to update the
NAND memory content or to use NFS root filesystem while developing our application. In this case at least the
eth@.ethaddr must be set, to give our network device an unique MAC address.

If no DHCP server is available, a static network setting can be used instead. We just comment out the ip=dhcp
option and enable all the eth@. * lines and give them appropriate values.

If we want to use an NFS based root filesystem, we also should adapt the nfsroot setting.

A Don't forget the setting of an unique MAC address. At least the entry eth@. ethaddr must be set.

3.2.2.2 Linux Kernel

To define network settings used at the run-time of the Linux kernel, we must adapt the file
configs/platform-friendlyarm-mini2440/projectroot/etc/network/interfaces instead.

3.2.3 Feature Adaptions

Other features of the Mini244o0 are:
+ the attached LCD
« if the touch facility is used

« ifa camera is present

These features can be enabled/disabled or configured at run-time with the kernel parameter mini2440=. The
content of this parameter is also configured in the config files mentioned above.

It is important that the LCD is configured correctly, so that it works at run-time. Here is a list of currently known
LCDs:

* 3.5" TFT + touchscreen (LCDN3502/NL2432HC22-23B)

— 17
Fengutromx

3 Building a root filesystem for the mini2440

o 7" TFT + touchscreen

VGA shield

3.5” TFT + touchscreen (T35)

5.6" TFT + touchscreen (ATo56TN52)

3.5" TFT + touchscreen (X35)

The list above corresponds to the number (beginning with o) given to the mini2440= kernel parameter to define
the LCD in use.

When starting the kernel later on, it will output the list of supported displays with the currently selected one
embraced.

MINI2440: LCD [0:240x320] 1:800x480 2:1024x768 3:240x320 4:640x480 5:240x320

As all of these existing LCDs differ in size and resolution, also userland may need more information than only
their resolution. If we run Qt based applications the Qt library must know some additional data about the display
as well. At least the physical size of the visible display area is an important value, as Qt uses this information to
calculate the font’s scale.

The BSP comes with a pre-configuration for the portrait LCDN3502 240 x 320 display. Its visible display area size
is: width 53 mm, height 71 mm.

To forward this additional information to Qt, the file configs/platform-friendlyarm-mini2440/projectroot/etc/profile.envir
exists in the BSP. We can edit it prior the build and change the size settings according to our own display if it
differs from the default one. This file will be part of the root filesystem and used at run-time.

After these changes are made, we can continue building the board support package.

3.3 Selecting a Userland Configuration

First of all we have to select a userland configuration. This step defines what kind of applications will be built for
the hardware platform. The OSELAS.BSP-Pengutronix-Mini2440-2011.07.0 comes with a predefined configura-
tion we select in the following step:

$ ptxdist select configs/ptxconfig
info: selected ptxconfig:
’configs/ptxconfig’

3.4 Selecting a Hardware Platform

Before we can build this BSP, we need to select one of the possible platforms to build for. In this case we want to
build for the mini244o0:

$ ptxdist platform configs/platform-friendlyarm-mini244@/platformconfig-NAND-64M
info: selected platformconfig:
’configs/platform-friendlyarm-mini2440/platformconfig-NAND-64M’

Note: If you have installed the OSELAS.Toolchain() at its default location, PTXdist should already have detected
the proper toolchain while selecting the platform. In this case it will output:

_ 18
Fengutromx

3 Building a root filesystem for the mini2440

found and using toolchain:
’ /opt/0SELAS.Toolchain-2011.03/arm-v4t-1linux-gnueabi/.!
gcc-4.5.2-glibc-2.13-binutils-2.21-kernel-2.6.36-sanitized/bin’

If it fails you can continue to select the toolchain manually as mentioned in the next section. If this autodetection
was successful, you can omit the step of the next section and continue to build the BSP.

3.5 Selecting a Toolchain

If not automatically detected, the last step in selecting various configurations is to select the toolchain to be used
to build everything for the target.

$ ptxdist toolchain /opt/OSELAS.Toolchain-2011.03/arm-v4t-1linux-gnueabi/
gcc-4.5.2-glibc-2.13-binutils-2.21-kernel-2.6.36-sanitized/bin

3.6 Building the Root Filesystem

Now everything is prepared for PTXdist to compile the BSP. Starting the engines is simply done with:

$ ptxdist go

PTXdist does now automatically find out from the selected_ptxconfigand selected_platformconfig files which
packages belong to the project and starts compiling their targetinstall stages (that one that actually puts the com-
piled binaries into the root filesystem). While doing this, PTXdist finds out about all the dependencies between
the packages and builds them in the correct order.

While the command ptxdist gois running we can watch it building all the different stages of a package. In the
end the final root filesystem for the target board can be found in the platform-mini244e/root/ directory and a
bunch of *.ipk packets in the platform-mini2440/packages/ directory, containing the single applications the root
filesystem consists of.

3.7 Building an Image

After we have built a root filesystem, we can make an image, which can be flashed to the target device. To do this
call

$ ptxdist images

PTXdist will then extract the content of priorly created *.ipk packages to a temporary directory and generate an
image out of it. PTXdist supports following image types:

+ hd.img: contains grub bootloader, kernel and root files in a ext2 partition. Mostly used for x86 target
systems.

« root.jffs2: root files inside a jffs2 filesystem.

« uRamdisk: a barebox/u-boot loadable Ramdisk

« initrd.gz: a traditional initrd RAM disk to be used as initrdramfs by the kernel

_ 19
Fengutromx

3 Building a root filesystem for the mini2440

« root.ext2: root files inside a ext2 filesystem.
+ root.squashfs: root files inside a squashfs filesystem.
» root.tgz: root files inside a plain gzip compressed tar ball.
« root.ubi: root files inside a ubi volume.
The to be generated image types and addtional options can be defined with

$ ptxdist platformconfig

Then select the submenu “image creation options”. The generated image will be placed into
platform-mini2440/images/.

which are put manually into the platform-mini2440/root/ will not be enclosed in the image. If

Only the content of the *.ipk packages will be used to generate the image. This means that files
A custom files are needed for the target, install them with PTXdist.

3.8 Deploying the Mini2g40

After building all the relevant images we can now load them on to the target.

What we need for this step:

« aworking network infrastructure
+ host with network and USB capabilities
 aworking TFTP server on our host
 some cables

- network

- USB-Ato USB-B

- RS232
« serial terminal running on our host

We assume here:

the directory of the TFTP server is /tftpboot

network is already configured for the host and the target (refer section 3.2.2)

all connections are done (network, USB, serial)

the serial terminal is able to handle 8 bits at 115200 Bd

To load the kernel and rootfs images, we first must load the new bootloader. This is the trickiest part, as we need
special tools on our host and the target. Also, we may have to deal with confusing error messages.

First of all, we must change the S2 switch on our Mini2440 to the NOR position to start the internal vivi bootloader.
After switching on the Mini2440, the vivi bootloader will greet us with:

_ 20
Fengutromx

3 Building a root filesystem for the mini2440

i FriendlyARM BIOS for 2440 #HHHH:

[x] bon part @ 320k 2368k

[v] Download vivi

[k] Download linux kernel

Lyl Download root_yaffs image

[a] Absolute User Application

[n] Download Nboot

[1] Download WinCE boot-logo

[w] Download WinCE NK.bin

[d] Download & Run

[z] Download zImage into RAM

[g] Boot linux from RAM

[f] Format the nand flash

[b] Boot the system

[s] Set the boot parameters

[ul Backup NAND Flash to HOST through USB(upload)
[r] Restore NAND Flash from HOST through USB
[q] Goto shell of vivi

[i] Version: 1026-12

Enter your selection:

We want to use the vivi bootloader to load the new barebox bootloader into the Mini2440's RAM. In order to do
so, we need the size in bytes of barebox’s binary:

$ 1s -1 platform-mini2440/images/barebox-image
-rw-r--r-- 1 jb user 147844 Jun 04 23:07 platform-mini2440/images/barebox-image

The size of this binary may differ in your case. In our case here it is 147844.

With this size we instruct the vivi bootloader to expect this number of bytes from the USB and store it to the
internal RAM. To do so, we enter 'q’ to enter vivi's shell. Then we start the download command.

Enter your selection: q
Supervivi> load ram 0x31000000 147844 u
Please consider the 147844 number here. This number must be the same as size of your barebox image.

At this point of time many error messages can happen. The Mini2440 may output USB host is not connected
yet. In this case disconnect the USB cable again, powercycle the Mini2440 and try again.

At the host side, the system may not be able to enumerate the Mini2440 correctly. In this case also disconnect
the Mini2440, powercycle it and connect it again.

You can check that the host was able to enumerate the Mini2440 successfully by issuing the 1susb command. If
the following line occurs in the list, the Mini2440 is successfully enumerated:

Bus 001 Device 023: ID 5345:1234 Owon PDS6062T Oscilloscope

Note: The bus and device number may differ in your case.

If the USB connection is up and working on both sides, we can start to push the new bootloader into the target.
This BSP comes with the required tool to do so.

$ sudo platform-mini2440/sysroot-host/bin/usbpush platform-mini2440/images/barebox-image

If the transfer was successful, the usbpush host tool will output:

; 21
Fengutromx

3 Building a root filesystem for the mini2440

csum = 0x74f9
send_file: addr = 0x30000000, len = 0x00024124

At the target side we will see:

Now, Downloading [ADDRESS:31000000h, TOTAL:147854]
RECEIVED FILE SIZE: 147854 (144KB/S, 1S)
Downloaded file at 0x31000000, size = 147844 bytes

Note: The numbers shown above may be different then what you see.

After a successful transfer, we can now run the downloaded bootloader:

Supervivi> go 0x31000000
go to 0x31000000
argument @ = 0x00000000
argument 1 = 0x00000000
argument 2 = 0x00000000
argument 3 = 0x00000000

This will start the barebox bootloader on the Mini2440, which will greet us with:

barebox 2011.05.0-mini2440-ptx-2011.07.0 (July 13 2011 - 14:21:13)

Board: Mini 2440

NAND device: Manufacturer ID: @xec, Chip ID: @x76 (Samsung NAND 64MiB 3,3V 8-bit)
Bad block table found at page 131040, version 0x01

Bad block table found at page 131008, version 0x01

dm9000 i/0: 0x20000300, id: ©0x90000a46

eth@eth@: got MAC address from EEPROM: FF:FF:FF:FF:FF:FF

refclk: 12000 kHz

mpll: 405000 kHz
upll: 48000 kHz
fclk: 405000 kHz
hclk: 101250 kHz
pclk: 50625 kHz

SDRAM1 : CL4@1QTMHz

SDRAM2: CL4@10Q1MHz

Malloc space: 0x33a00000 -> 0x33e00000 (size 4 MB)

Stack space : 0x339f8000 -> 0x33a00000 (size 32 kB)

envfs: wrong magic on /dev/env@

no valid environment found on /dev/env@. Using default environment
running /env/bin/init...

Hit any key to stop autoboot: 3

Stop the autoboot timeout by hitting any key. We are now in the shell environment of barebox. To update the
NAND content in the next step we need a working network first. One check is to show the current setting of the
network interface. You should see your own settings here, done in section 3.2.2. Here is an example for a static
network configuration:

mini2440:/ devinfo etho
base : 0x00000000

size : 0x00000000
driver: none

- 22
Fengutromx

3 Building a root filesystem for the mini2440

Parameters:
ipaddr = 192.168.1.240
ethaddr = 00:04:13:00:06: 35
gateway = 192.168.1.2
netmask = 255.255.255.0
serverip = 192.168.1.7

If you do not see appropriate values here and you are using the DHCP option, run the dhcp command first:

mini2440:/ dhcp
DHCP client bound to address 192.168.1.27

If you do not use DHCP for network configuration, you must edit the file /env/config first.

mini2440:/ edit /env/config

Note: Barebox supports auto completion of commands, paths and filenames. Use the well known TAB key.

Edit the lines beginning with eth@. x and give them appropriate values. We can leave the editor by hitting CTRL-D
to save our changes, or CTRL-C to discard any change. If we want these new settings to be persistent, we can
save them now to NAND:

mini2440:/ saveenv

To make the new static network configuration work, we must execute the config file again:

mini2440:/ . /env/config

Running the devinfo eth@ command again should now show the values for the network interface that you put in
earlier. To check if it is really working, try pinging other hosts:

mini2440:/ ping 192.168.1.7
host 192.168.1.7 is alive

In order to store all the relevant components into the NAND, we can now use some of the builtin features in
barebox.

First we must copy, at the host side, all generated images from the board support package to the directory used
by the TFTP server:

$ cp platform-mini2440/images/barebox-image /tftpboot/barebox-mini2440
$ cp platform-mini2440/images/root.jffs2 /tftpboot/root-mini2449.jffs2
$ cp platform-mini2440/images/linuximage /tftpboot/ulmage-mini2440

Then we can run a script at the Mini2440’s side:

mini2440:/ update -t barebox -d nand
mini2440:/ update -t rootfs -d nand
mini2440:/ update -t kernel -d nand

That's all. To boot using the new firmware, we must now change the switch Sz back to the NAND position. Power
cycle the Mini2440 or press its reset button and the new software will start.

_ 23
Fengutromx

3 Building a root filesystem for the mini2440

3.9 Updating the Mini2440

At any time it's possible to update any of the software components running on the Mini2440.

« the bootloader Barebox
 Barebox’s persistent environment
« the Linux kernel

» the kernel's root filesystem

3.9.0.1 Updating the Bootloader

Most of the time there is no further need to re-flash the bootloader and its persistent environment. After it was
setup once, it does its work "in the background”. But nevertheless there could be the need to update the boot-
loader due to feature additions or bug fixes. If the current Barebox bootloader is still working, its replacement
can be done by using the existing bootloader. This assumes that the network is still functioning. In this case, a
simple

$ cp platform-mini2440/images/barebox-image /tftpboot/barebox-mini2440

provides the updated bootloader binary via TFTP and a

mini2440:/ update -t barebox -d nand

will do the job at the target side. After starting this command, do not disturb! This is a critical update process.
Because, fora short period of time the NAND flash is erased, with no bootloader present. But don't panic: Unless
a power fail or a target reset happens, this command can be repeated if the first run failed.

3.9.0.2 Updating the Persistent Environment

Updating the persistent environment is also possible. A simple

$ cp platform-mini2440/images/barebox-default-environment /tftpboot/barebox-default-environment-mini2440

provides the updated environment via TFTP and a

mini2440:/ update -t bareboxenv -d nand

will do the job. Note: This new persistent environment will be used at the next system start.

If the persistent environment is broken, there is a second method to restore a working environment: that is,
using the compiled in default environment which comes with Barebox. To force the usage of the compiled in
default environment, just erase the current one in the NAND flash memory and reset the target (or run the reset
command).

mini2440:/ erase /dev/bareboxenv.bb
mini2440:/ reset

Now, Barebox will stumble about the empty partition and then fall back to its compiled-in environment version.
This can now be changed by editing the files in env/ and then saved back to the NAND flash memory with the
command

mini2440:/ saveenv

_ 24
Fengutromx

3 Building a root filesystem for the mini2440

3.9.0.3 Updating the Linux Kernel

Changing the Linux kernel configuration can be quite dynamic, especially while the developer is trying different
kernel configurations. Updating this part happens in the same way like the other parts. Providing the Linux kernel
via TFTP:

$ cp platform-mini2440/images/linuximage /tftpboot/ulmage-mini2440

and running the update script at the target's side:

mini2440:/ update -t kernel -d nand

3.9.0.4 Updating the Root Filesystem

And last, but not least, updating the root filesystem. Same procedure:

$ cp platform-mini2440/images/root.jffs2 /tftpboot/root-mini2440.jffs2

and running the update script at the target's side:

mini2440:/ update -t rootfs -d nand

By the way: the update command is not a real command built into Barebox. Its a simple shell script coming
from the persistent environment. If one has different update scenarios she/he can change or adapt this script.
Changing this behaviour can be done without touching Barebox'’s source code.

_ 25
Fengutromx

4 Special Notes

41 Available Kernel Releases

The predifined Mini2440 platform configuration always uses the latest Linux kernel release. If users want to stay
with an older Linux kernel release, they are also available. Here is a list of currently available Linux kernel releases
in the OSELAS.BSP-Pengutronix-Mini2440-2011.07.0:

+ 2.6.39, stable patch level 3 (default)
» 2.6.38, stable patch level 8

If you want to build the BSP with an non-default kernel release, just run ptxdist platformconfigand change the
kernel setting prior to building.

Note: The hashes for the kernels are (used by PTXdist):
» 2.6.39: 1aab7a741abe08d42e8eccf20de61e05
e 2.6.38: 7d471477bfa67546f902da62227fa976

4.2 Available Userland Configuration

The Mini2440 BSP comes with two different predefined userland configurations:

» configs/ptxconfig: it is the standard one to get a small running embedded system. It can be used as a
base for your own development running the Mini2440 headless.

« configs/ptxconfig.qt: this configuration is intended for graphical usage of the Mini2440. It has the Qt
library enabled and brings in a small Qt based application. This application will be started automatically
at system'’s startup, to show how to get a graphical system up and running.

It's up to you and your needs which configuration you may choose in section 3.3.

4-2.1 Some details about the configs/ptxconfig.qt
The mentioned small Qt based application we can find in local_src/qt4-demo-2011.07.0/. It can act as a tem-
plate for our own Qt development.

The "secrets” how to build and install this application we can find in rules/qt4-demo.make and the corresponding
menu file in rules/qt4-demo. in.

The "magic” behind the autostart of this small Qt based application at system startup can be found in
projectroot/etc/init.d/startup.

Note: The small Qt demo is prepared to run on a portrait 240 x 320 screen. If your screen differs from this setup,
don't expect a correct image.

_ 26
Fengutromx

4 Special Notes

4.3 Framebuffer

This driver gains access to the display via device node /dev/fb@. For this BSP the LCDN3502-23B display with a
resolution of 240x320 is supported.

A simple test of this feature can be run with:

fbtest

This will show various pictures on the display.

You can check your framebuffer resolution with the command

fbset

NOTE: fbset cannot be used to change display resolution or colour depth. Depending on the framebuffer device
different kernel command line may be needed to do this. Please refer to your display driver manual for details.

4.4 GPIO

Like most modern System-on-Chip CPUs, the S3C2440 has numerous GPIO pins. Some of them are inaccessi-
ble for the userspace, as Linux drivers use them internally. Others are also used by drivers but are exposed to
userspace via sysfs. Finally, the remaining GPIOs can be requested for custom use by userspace, also via sysfs.

Refer to the in-kernel documentation Documentation/gpio. txt for complete details how to use the sysfs-interface
for manually exporting GPIOs.

4.4.1 GPIO Usage Example

When generic architecture GPIO support is enabled in the kernel, some new entries appear in sysfs. Everything
is controlled via read and writable files to generate events on the digital lines.

We find all the control files in /sys/class/gpio. In that path, there are a number of gpiochipXXX entries, with XXX
being a decimal number. Each of these folders provide information about a single GPIO controller registered on
the Mini2440 board, for example with gpiochip192:

1s /sys/class/gpio/gpiochip192
base label ngpio subsystem uevent

The entry base contains information about the base GPIO number and ngpio contains all GPIOs provided by this
GPIO controller.
We use GPI0193 as an example to show the usage of a single GPIO pin.

echo 193 > /sys/class/gpio/export

This way we export gpio193 for userspace usage. If the export was successful, we will find a new directory named
/sys/class/gpio/gpio193 afterwards. Within this directory we will be able to find the entries to access the func-
tions of this GPIO. If we wish to set the direction and initial level of the GP1O, we can use the command:

echo high > /sys/class/gpio193/direction

_ 27
Fengutromx

4 Special Notes

This way we export GPI0193 for userspace usage and define our GPIO’s direction attribute to an output with
initially high level. We can change the value or direction of this GP1O by using the entries direction or value.

Note: This method is not very fast, so for quickly changing GPIOs it is still necessary to write a kernel driver. The
method shown works well, for example to influence an LED directly from userspace.

To unexport an already exported GPIO, write the corresponding gpio-number into /sys/class/gpio/export.

echo 193 > /sys/class/gpio/unexport

Now the directory /sys/class/gpio/gpio193 will disappear.

Note: The GP10193 is available at connector 4, pin 17 for measurement.

4.5 12C Master

The S3C2440 processor based Mini2440 supports a dedicated 12C controller onchip. The kernel supports this
controller as a master controller.

Additional 12C device drivers can use the standard 12C device API to gain access to their devices through this
master controller. For further information about the 12C framework see Documentation/i2c in the kernel source
tree.

4.5.1 12C Device AT24c08

This device is a 1024 bytes non-volatile memory for general purpose usage.

This type of memory is accessible through the sysfs filesystem. To read the EEPROM content simply open() the
entry /sys/bus/i2c/devices/0-0050/eepromand use fseek() and read() to get the values.

4.6 LEDs

The LEDs on the Mini2440 can be controlled via the LED-subsystem of the Linux kernel. It provides methods
for switching them on and off as well as using so-called triggers. For example, you could trigger the LED using a
timer. That enables us to make it blink with any frequency we want.

All LEDs can be found in the directory /sys/class/leds. Each one has its own subdirectory. We will use 1ed1 for
the following examples.

For each directory, you have a file named brightness which can be read and written with a decimal value between
o and 255. The first one means LED off, the latter maximum brightness. Inbetween values scale the brightness if
the LED supports that. If not, non-zero means just LED on.

/sys/class/leds/led1# echo 255 > brightness; # LED on
/sys/class/leds/led1# echo 128 > brightness; # LED at 50% (if supported)
/sys/class/leds/led1# echo @ > brightness; # LED off

LEDs can be connected to triggers. A list of available triggers we can get from the trigger entry

/sys/class/leds/led1# cat trigger
[none] nand-disk mmc@ timer backlight

_ 28
Fengutromx

4 Special Notes

The embraced entry is the currectly connected trigger to this LED.

To change the trigger source to the timer, just run a:

/sys/class/leds/led1# echo timer > trigger

If the timer-trigger is activated you should see two additional files in the current directory, namely delay_on and
delay_off. You can read and write decimal values there, which will set the corresponding delay in milliseconds.
As an example:

/sys/class/leds/led1# echo 250 > delay_on
/sys/class/leds/led1# echo 750 > delay_off
will blink the LED being on for 250ms and off for 750 ms.

Replace timer with none to disable the trigger again. Or select a different one from the list read from the trigger
entry.

Refer to Documentation/leds-class. txt in-kernel documentation for further details about this subsystem.

4.7 MMC/SD Card

The Mini2440 supports Secure Digital Cards and Multi Media Cards to be used as general purpose blockdevices.
These devices can be used in the same way as any other blockdevice.

These kind of devices are hot pluggable, so you must pay attention not to unplug the device
while its still mounted. This may result in data loss.

Afterinsertingan MMC/SD card, the kernel will generate new device nodes in dev/. The full device can be reached
via its /dev/mmcblke device node, MMC/SD card partitions will occur in the following way:

/dev/mmcblkopY

Y counts as the partition number starting from 1 to the max count of partitions on this device.

Note: These partition device nodes will only occur if the card contains a valid partition table ("harddisk” like
handling). If it does not contain one, the whole device can be used for a filesystem ("floppy” like handling). In
this case /dev/mmcblk@ must be used for formatting and mounting.

The partitions can be formatted with any kind of filesystem and also handled in a standard manner, e.g. the mount
and umount command work as expected.

4.8 Network

The Mini2440 module has a DMgooo ethernet chip onboard, which is being used to provide the eth@ network
interface. The interface offers a standard Linux network port which can be programmed using the BSD socket
interface.

— 29
Fengutromx

4 Special Notes

4.9 SPI Master

The Mini2440 board supports an SPI bus, based on the S3C2440’s integrated SPI controller. It is connected to
the onboard devices using the standard kernel method, so all methods described here are not special to the

Mini2440.

Connected devices can be found in the sysfs at the path /sys/bus/spi/devices. It depends on the corresponding
SPI slave device driver providing access to the SPI slave device through this way (sysfs), or any different kind of

API.

A Currently no SPI slave devices are registered, so the /sys/bus/spi/devices directory is empty.

4.10 Touchscreen

A simple test of this feature can be run with:

ts_calibrate

to calibrate the touch and with:

ts_test

to run a simple application using this feature.

To see the exact events the touch generates, we can also use the evtest tool.

evtest /dev/input/eventi
Input driver version is 1.0.1
Input device ID: bus 0x19 vendor @xdead product @xbeef version 0x102
Input device name: ”S3C24XX TouchScreen”
Supported events:
Event type @ (Sync)
Event type 1 (Key)
Event code 330 (Touch)
Event type 3 (Absolute)
Event code @ (X)

Value 0
Min 0
Max 1023
Event code 1 (Y)
Value)
Min 0
Max 1023
Testing ... (interrupt to exit)

Whenever we touch the screen this tool lists the values the driver reports.

30

4 Special Notes

4.10.1 If the Touchscreen does not work

A functional touchscreen depends on some external configurations and parameters. Firstly, the touchscreen
driver for the S3C2440 CPU must be enabled in the kernel. If it is supported, it can be checked at run-time with
the following command:

1s /sys/bus/platform/drivers

A samsung-ts must be listed in this directory. If not, the kernel must be re-configured to support this device.

Secondly, a functional touchscreen depends on is the registered touchscreen device. If it is registered, this can
be checked at run-time with this command:

1s /sys/bus/platform/devices

A s3c2440-ts must be listed in this directory. If not, something is preventing the kernel from registering this de-
vice. The touchscreen on this platform is an optional part, so it must be enabled on demand to make it work. The
touchscreen is enabled by the mini2440= kernel parameter. If the running kernel receives the correct parameter
this setting can be checked with:

cat /proc/cmdline
console=ttySACQ, 115200 mini2440=0tb mtdparts=nand: 256k (barebox), 64k (bareboxenv), 2048k (kernel),-(root)

Referring to the mini2440=0tb parameter, specifically to the 't". If the 't’ is present the touchscreen gets registered
at run-time and can be used. If the 't’ is missing the touchscreen will NOT be registered.

To add a missing 't’, restart the target, stop Barebox from booting and edit the bootparameter in the /env/config
file. Save the new settings and boot again.

4.11 LCD Backlight

The backlight of the LCD can be controlled via the sysfs entry in:

/sys/class/leds/backlight/

To switch it off, just write a "0’ into its brightness entry:

echo @ > /sys/class/leds/backlight/brightness

and a1’ to switch it on again:

echo 1 > /sys/class/leds/backlight/brightness

4.12 USB Host Controller Unit

The Mini2440 supports a standard OHCI Rev. 1.0a compliant host controller onboard for low and full speed
connections.

_ 31
Fengutromx

4 Special Notes

4.13 Watchdog

The internal watchdog will be activated when an application opens the device /dev/watchdog. Default timeout
is 15 seconds. An application must periodically write to this device. It does not matter what is written. Just the
interval between these writes should not exceed the timeout value, otherwise the system will be reset.

For testing the hardware, there is also a shell command which can do the triggering:

watchdog -t <trigger-time-in-seconds> /dev/watchdog

This command is part of the busybox shell environment. Keep in mind, that it should only be used for testing. If
the watchdog gets fed by it, a crash of the real application will go unnoticed.

For the Mini2440 the default 60 seconds interval period the tool is using is too long. The driver for the S3C2440
only supports up to a 40 seconds interval. So, the additional parameter -T 4@ must be given.

4.14 ADC

Getting the digital equivalent of one of the analogue input channels can be done by reading the corresponding
entries in the sysfs.

For example the analogue input channel o on the Mini2440 is connected to the potentiometer W1. By reading the
entry /sys/devices/platform/s3c24xx-adc/s3c-hwmon/in@_input we can watch the different digital values while
turning the the potentiometer W1.

Note: The analogue input channels 4 ... 7 are occupied by the touchscreen feature and can only be used as simple
analogue inputs if the touchscreen feature is disabled.

4.15 Keypad

Using the up to 6 available key buttons on the Mini2440 in a reqular manner requires a working console in the
kernel. Here the list of the current key codes they generate when pressed:

e K1, code 'F1’
o K2, code 'F2’
» K3, code 'F3’
» Kg, code 'Power’
» Ks, code 'Fg’
+ K6 (no code, yet)

If one wants to change the generated codes, she/he can change it in the platform code found in
arch/arm/mach-s3c2440/mach-mini2449.c, specially in the array mini2440_buttons.

If the key buttons are working as expected, can also be checked without a working console with the following
command:

— 32
Fengutromx

4 Special Notes

evtest /dev/input/event®
Input driver version is 1.0.1
Input device ID: bus 0x19 vendor @0x1 product @x1 version 0x100
Input device name: ”gpio-keys”
Supported events:
Event type @ (Sync)
Event type 1 (Key)
Event code 59 (F1)
Event code 60 (F2)
Event code 61 (F3)
Event code 63 (F5)
Event code 116 (Power)
Testing ... (interrupt to exit)

4.16 Audio

This kernel supports the audio capabilities of the Mini2440 via a standard ALSA device. So, most of the available
tools to play or record sounds should work out of the box.

To control the audio mixer run the tool alsamixer, to play a simple sound file aplay can be used and for MP3 files,
textttmadplay is the correct tool.

4.17 USB Device

The S3C2440 processor in the Mini2440 comes with a USB device unit. This is the physical interface to let the
Mini2440 act in some roles in the USB world. For example the Mini2440 can act as a printer or a simple serial
adapter. There are also drivers to act as a mass storage device, but its setup is more complicated. So, this section
describes the printer case.

To prepare the Mini2440 to act as a printer just load the printer gadget driver.

modprobe g_printer
Printer Gadget: Printer Gadget, version: 2007 OCT 06
Printer Gadget: using s3c2410_udc, OUT ep2-bulk IN ep1-bulk

Starting this driver will create a /dev/g_printer device node. This device node can be opened for reading and
writing. It's the end of two "pipes” for data to and from a connected host.

Now, the Mini244o0 is ready for connection to a host via its USB B plug. If it works, the kernel at the host side will
detect a new device:

usb 1-1: new full speed USB device number 2 using s3c2410-ohci
usblp@: USB Bidirectional printer dev 7 if @ alt @ proto 2 vid 0x0525 pid OxA4A8
Note: At the host side the usblp module is required to make this new USB hotplug device visible as a printer.

At the host side now a /dev/usb1p@ device node will be created. Also this device node can be opened for reading
and writing. And also this node is the end of two "pipes” for data to and from the "printer”.

Everything we 'echo’ into /dev/usblp® at the host side, we can 'cat’ from /dev/g_printer at the Mini2440 side.
And vice versa.

And a real funny game is to connect Mini2440's USB A to its own USB B. Then the Mini244o0 can talk to itself.

Féhgutronlx 3

4 Special Notes

418 Get the latest BSP Release for the Mini2g440

Information and the latest release of the Mini2440 BSP can be found on our website at:

http://www.oselas.org/oselas/bsp/index_en.html

4.19 Be Part of the Mini2440 BSP Development

If you want to use the latest and greatest board support package for the Mini2440 you can use the git repository
as your working source, instead of a release archive.

The git repository can be found here:
http://git-public.pengutronix.de/git-public/OSELAS.BSP-Pengutronix-Mini2440.git

If you want to contribute to this project by sending patches, these patches should always be based on the master
branch of this repository.

4.20 Notes About the Bootloader Barebox

Everything mentioned here (variable names and file names) in the run-time environment that Barebox uses, is for
convenience only. The developers of Barebox decided to provide a generic run-time environment that satisfies
the most common requirements. All descriptions below will refer to this generic run-time environment and it’s
behaviour.

There are no restrictions in how to adapt this environment for one’s own needs. How Barebox enters it's shell is
compiled-in. Changing the /env/bin/init, allows one to modify Barebox's behaviour.

4.20.1 Run-Time Environment

The Barebox binary handles only target initialization and provides device drivers and various commands to do
things after the initialization. It is up to the user to use these features to make her/his target work. This works
on a shell code base. For example Barebox, tries to run the /env/bin/init script right after the initialization is
finished. This file is expected as a part of the environment.

From the technical point of view, the Barebox environment is a simple archive which contains files and directories.
At startup, this archive will be extracted to the env/ directory and can be used afterwards on a regular file base.
Note: the / directory in Barebox is a RAM filesystem.

As Barebox tries to run the /env/bin/init script after the initialization, an environment is always required. The
archive that each environment is based on, can be a compiled-in component or can be loaded at run-time from
a persistent media.

The compiled-in environment archive is a read only archive defined at compile-time of Barebox. The environment
archive from the persistent media is (most of the time) a read/write archive. It can be changed at any time and
saved back to make the change persistent.

Barebox always tries to load the environment archive from the registered persistent media first. If this fails, Bare-
box defaults to the compiled-in environment archive.

Féngutronlx 34

http://www.oselas.org/oselas/bsp/index_en.html

4 Special Notes

4.20.2 How does the Partitioning Work in Barebox

Partitioning is a way to handle large media in smaller logical units. This simplifies updates of different compo-
nents and leaves others untouched. For example, one can update the kernel to fix a bug in a driver but keep the
root filesystem unchanged. Also, redundant boot can be realized with more than one partition per component.

Barebox uses partitioning of the available persistent media (for example, NOR or NAND flash, but also harddisks
or SD cards) to handle and store the required parts to make a target work.

Some of the available persistent media can store it's partition information on the media itself. For example hard
disks, compact flash cards or SD cards can provide their own partition table.

In this case, Barebox can read back this table from the media and handle these partition’s sizes and locations in
a correct manner.

But, there are still some media that do not provide this kind of partition table. The well known plain flash devices
(of type NOR or NAND) are such candidates. These devices need slightly different handling. The most common
method the kernel uses is the Command line partition table parsing for the MTD (Memory Technology Devices)
devices. A user gives a kernel parameter with the list of names and sizes that describes the partition layout of the
corressponding flash memory.

Barebox uses the same syntax to describe the partition and kernel layout. So, a user only has to define the layout
once. It will be shared between Barebox and the Linux kernel. If one doesn’t use consistent layout, one could
destroy the data in one partition by changes in another parition.

This partition layout string is defined to:

<size>(<name>)[,<size>(<name>)[,<size>(<name>)]...]

<size>is a number followed by its unit. The unit can be k for kilobyte, M for megabyte and G for gigabyte. For
<size>also the special letter - can be given. This means, fill the remaining space up to the end of the media. The
<name> can be anything one likes, but must not contain any spaces!

Here is the most common partition layout configuration:
In Barebox’s run-time environment it looks like:

256k (barebox) , 64k (bareboxenv) , 2048k (kernel) ,-(root)

+ bootloader itself (barebox): this binary brings up the target after power on or reset

« persistent environment (bareboxenv): used by Barebox to bring up the whole system in the way that the
user has configured it

« operating system (kernel): the kernel image, Barebox will load and run it

« root filesystem (root): used by the kernel as the root filesystem

The size and location of some of these partitions can be modified at run-time via the variable nand_parts in the
env/config file. Here the user can increase the kernel partition, or add more partitions to the free part of the list.

However, two of the listed partitions are special: the location and size of the bootloader (barebox) partition and
of the run-time environment (bareboxenv) partition.

These must be known soon after reset. So, we have a chicken/egg problem: to read the persistent environment,
Barebox must know where the persistent environment is located. To do so, Barebox initially creates the bare-
box and bareboxenv partitions and after loading the persistent environment Barebox then adds the remaining
partitions based on the nand_parts variable.

Féngutronlx 35

4 Special Notes

This handling implies the internally registered partitions for Barebox and the persistent environment must be the
same in size and location as the partitions described in the nand_parts variable.

This then means, if one would like to change the size of the barebox or the bareboxenv partitions, she/he must
change the platform source code and the nand_parts variable.

Here an example for a partition setup in the run-time environment:

nand_parts="256k (barebox) , 64k (bareboxenv), 2048k (kernel),-(root)”

It corresponds to the following NAND partition layout:

¢ 64 MiB NAND »
256 kiB 64.kIB .2048 kig free for
persistent Linux Kernel
Bootloader . root filesystem usage
Environment Image
™1 »l
~ ”

Fixed in size and location Free in size and location

This setup defines

» 256 kiB for the bootloader (barebox) at the beginning of the persistent media.
* 64 kiB for the persistent environment (bareboxenv) following the bootloader partition
» 2 MiB for the kernel (kernel)

+ the remaining space on the persistent media for the root filesystem (root)

For the Mini244o0 the platform source code is located in:
platform-mini2440/build-target/barebox-<version>/arch/arm/boards/mini2440/mini2440.c
and looks like this:

[...]

/% —mmmmmmmm add some vital partitions -------- */
devfs_del_partition(”self_raw”);
devfs_add_partition(”nand@”, 0x00000, 0x40000, PARTITION_FIXED, ”self_raw”);
dev_add_bb_dev(”self_raw”’, ”self0”);

devfs_del_partition(”env_raw”);
devfs_add_partition(”nand@”, 0x40000, 0x10000, PARTITION_FIXED, “env_raw”);
dev_add_bb_dev(”env_raw”, ”env@”);

[...]

Please ensure after changing any of the "Fixed in size and location” partitions that Barebox is re-compiled and
re-flashed to keep the compiled-in environment in sync with the platform source code.

Also consider: for the partitions that are free in size and location, you can change these settings at run-time
and store it to the persistent environment. But, if this persistent environment gets lost Barebox will default to
the compiled-in environment. If this compiled-in environment has different partition sizes and locations, error
messages will occur. This is because reading from partitions with wrong settings in size and location will fail.

So, the best procedure is to change the compiled-in environment to ensure the partition layout is always consis-
tent, even if the modified persistent environment gets lost.

_ 6
Fengutromx 3

4 Special Notes

4.21 Thanks

A thank you goes to Dave Festing for fixing all my english spelling and the discussions what is missing in this
manual and how things are really working. Many details are still missing.

Féngutronlx 37

5 Document Revisions

2011/05/07
2011/05/10
2011/05/21

2011/06/03
2011/06/05
2011/06/17
2011/06/17
2011/06/19
2011/07/02
2011/07/02

Initial Revision

Path to the public GIT repository fixed

Add info about available kernel releases

Spelling fixes all over the place

Add info about ADC, key buttons and audio usage

Add info how to use the Mini2440 as a USB gadget

Add info how to update individual software parts

Add info how control the LCD backlight

Add info about the predefined Qt enabled configuration
Add info about environment variables used by Qt at runtime

X

38

6 Getting help

Below is a list of locations where you can get help in case of trouble. For questions how to do something special
with PTXdist or general questions about Linux in the embedded world, try these.

6.1 Mailing Lists

6.1.1 About PTXdist in Particular
This is an English language public mailing list for questions about PTXdist. See
http://www.pengutronix.de/mailinglists/index_en.html
how to subscribe to this list. If you want to search through the mailing list archive, visit
http://www.mail-archive.com/

and search for the list ptxdist. Please note again that this mailing list is just related to the PTXdist as a software.
For questions regarding your specific BSP, see the following items.

6.1.2 About Embedded Linux in General
This is a German language public mailing list for general questions about Linux in embedded environments. See
http://www.pengutronix.de/mailinglists/index_de.html

how to subscribe to this list. Note: You can also send mails in English.

6.2 News Groups

6.2.1 About Linux in Embedded Environments
This is an English newsgroup for general questions about Linux in embedded environments.

comp.os.linux.embedded

6.2.2 About General Unix/Linux Questions
This is a German newsgroup for general questions about Unix/Linux programming.

de.comp.os.unix.programming

Féngutronlx 39

http://www.pengutronix.de/mailinglists/index_en.html
http://www.mail-archive.com/
http://www.pengutronix.de/mailinglists/index_de.html

6 Getting help

6.3 Chat/IRC

About PTXdist in particular
irc.freenode.net:6667

Create a connection to the irc.freenode.net:6667 server and enter the chatroom #ptxdist. This is an English
room to answer questions about PTXdist. Best time to meet somebody there is at European daytime.

6.4 FriendlyARM mini244o0 specific Mailing List
oselas@community.pengutronix.de

This is a community mailing list open for everyone for all mini2440's board support package related questions.
Refer our page at

http://www.pengutronix.de/mailinglists/index_en.html

to subscribe to this mailing list.

Note: Please be aware that we cannot answer hardware only related questions on this list.

6.5 Commercial Support

You can order immediate support through customer specific mailing lists, by telephone or also on site. Ask our
sales representative for a price quotation for your special requirements.

Contact us at:

Pengutronix
Peiner Str. 6-8
31137 Hildesheim
Germany
Phone: +49-5121/206917-0
Fax: +49 -5121 /206917 -5555

or by electronic mail:

sales@pengutronix.de

Féngutronlx 40

mailto:oselas@community.pengutronix.de
http://www.pengutronix.de/mailinglists/index_en.html
mailto:sales@pengutronix.de

"”Il“
||It|||'l

™
I'|f!illll

1 it
e

ot

oy

i} L
!:HEH"I
Irl’iiill

Tl

,“ull“""a

‘“nll“"

L]

[hition

(bl

ﬂiﬂﬂﬁ\

This is a Pengutronix Quickstart Manual

Copyright Pengutronix e.K.
All rights reserved.

Pengutronix e.K.
Peiner Str. 6-8
31137 Hildesheim
Germany
Phone: +49 -5121/206917-0
Fax: +49 - 5121 /20 6917 - 55 55

Pengutronix

	OSELAS Quickstart forFriendlyARM mini2440
	You have been warned
	Getting a working Environment
	Download Software Components
	PTXdist Installation
	Main Parts of PTXdist
	Extracting the Sources
	Prerequisites
	Configuring PTXdist

	Toolchains
	Using Existing Toolchains
	Building a Toolchain
	Building the OSELAS.Toolchain for OSELAS.BSP-Pengutronix-Mini2440-2011.07.0
	Protecting the Toolchain
	Building Additional Toolchains

	Building a root filesystem for the mini2440
	Extracting the Board Support Package
	Feature Dependend Configurations
	Identify Your Mini2440
	Network Adaptions
	Feature Adaptions

	Selecting a Userland Configuration
	Selecting a Hardware Platform
	Selecting a Toolchain
	Building the Root Filesystem
	Building an Image
	Deploying the Mini2440
	Updating the Mini2440

	Special Notes
	Available Kernel Releases
	Available Userland Configuration
	Some details about the configs/ptxconfig.qt

	Framebuffer
	GPIO
	GPIO Usage Example

	I²C Master
	I²C Device AT24c08

	LEDs
	MMC/SD Card
	Network
	SPI Master
	Touchscreen
	If the Touchscreen does not work

	LCD Backlight
	USB Host Controller Unit
	Watchdog
	ADC
	Keypad
	Audio
	USB Device
	Get the latest BSP Release for the Mini2440
	Be Part of the Mini2440 BSP Development
	Notes About the Bootloader Barebox
	Run-Time Environment
	How does the Partitioning Work in Barebox

	Thanks

	Document Revisions
	Getting help
	Mailing Lists
	About PTXdist in Particular
	About Embedded Linux in General

	News Groups
	About Linux in Embedded Environments
	About General Unix/Linux Questions

	Chat/IRC
	FriendlyARM mini2440 specific Mailing List
	Commercial Support

