
phyCORE-MPC5200B

OSELAS.BSP()
Phytec phyCORE-MPC5200

Quick Start Manual
http://www.oselas.com

© 2006 by Pengutronix, Hildesheim. All Rights Reserved.

$Rev: 460 $ $Date: 2006-06-27 13:08:36 +0200 (Tue, 27 Jun 2006) $

1

Contents

1 PTXdist Installation 3
1.1 Building Blocks . 3
1.2 Prerequisites . 3
1.3 Installation from the Sources . 4

2 Toolchain 7
2.1 Using Existing Toolchains . 8
2.2 Toolchain Building . 8

3 Building phyCORE-MPC5200B’s root filesystem 10
3.1 Our First Project . 10
3.2 Compiling the Root Filesystem . 10
3.3 Building a Flash Image . 11

4 Booting Linux 12
4.1 Target Side Preparation . 13
4.2 Default U-Boot environment . 14

4.2.1 Stand alone . 14
4.2.2 Network based . 15

4.3 Remote-Booting Linux . 16
4.3.1 Development Host Preparations . 17
4.3.2 Preparations on the Embedded Board 17
4.3.3 Booting the Embedded Board . 17

4.4 Stand-Alone Booting Linux . 18
4.4.1 Development Host Preparations . 18
4.4.2 Preparations on the Embedded Board 18
4.4.3 Booting the Embedded Board . 19

5 Acessing Peripherals 20
5.1 NOR Flash Memory . 21
5.2 CAN Bus . 21

5.2.1 Socket-CAN . 22

2

Contents

5.2.2 Starting and Configuring Interfaces from the Command Line 22
5.2.3 Using the CAN Interfaces from the Command Line 23
5.2.4 Programming CAN Interfaces in C . 24
5.2.5 Sending CAN Messages . 25
5.2.6 Receiving CAN Messages . 26
5.2.7 Closing Interfaces & Further Reading 27
5.2.8 Getting help . 27

5.3 Network . 28
5.4 FPGA support . 28

5.4.1 General . 28
5.4.2 Demo . 29

6 Some hints on using phyCORE-MPC5200B 32
6.1 Decreasing boot time . 32

6.1.1 Easier and faster kernel load . 32
6.1.2 Disable Console output while kernel startup 33

3

1 PTXdist Installation

1.1 Building Blocks

The main tool of the OSELAS.BoardSupport() Package is PTXdist. So before starting any
work we’ll have to install PTXdist on the development host.

PTXdist consists of the following parts:

• The ptxdist program, which is installed on the development host during the in-
stallation process. ptxdist is called to trigger any actions, like building a software
packet, cleaning a tree etc. Usually the ptxdist program is used in a workspace di-
rectory, which contains all project relevant files.

• A configuration system. The config system is used to customize a configuration, which
contains information about which packages have to be built and which options are
selected.

• Patches. Due to the fact that some upstream packages are not bug free – especially
with regard to cross compilation – it is often necessary to patch the original soft-
ware. PTXdist contains a mechanism to automatically apply patches to packages.
The patches are bundled into a separate archive. Nevertheless, they are necessary to
build a working system.

• Package descriptions. For each software component there is a ”recipe” file, specify-
ing which actions have to be done to prepare and compile the software. Additionally,
packages contain their configuration sniplet for the config system.

1.2 Prerequisites

Before PTXdist can be installed it has to be checked if all necessary programs are installed
on the development host. The configure script will stop if it discovers that something is
missing.

4

1.3 Installation from the Sources

1.3 Installation from the Sources

To install PTXdist, three archives have to be extracted:

• ptxdist-0.10.4.tgz , containing the software
• ptxdist-patches-0.10.4.tar.gz , containing all patches for upstream packets
• OSELAS.BSP-phyCORE-MPC5200B-1.tar.gz , containing the board support

package (project) for the Phytec phyCORE-MPC5200B board.

The PTXdist and patches packets have to be extracted into some temporary directory, for
example the local directory in the user’s home. If this directory does not exist, we have
to create it and change into it

˜# cd
˜# mkdir local
˜# cd local

At this point we mount the CDROM with the PTXdist tar files and inflate the first two of
them into the temporary directory.

˜/local# mount /media/cdrom
˜/local# tar -zxf /media/cdrom/

OSELAS.BSP-phyCORE-MPC5200B-1/
ptxdist-0.10.4.tgz

˜/local# tar -zxf /media/cdrom/
OSELAS.BSP-phyCORE-MPC5200B-1/
ptxdist-0.10.4-patches.tar.gz

If everything goes well, we now have a PTXdist-0.10.4 directory, so we can change into it:

˜/local# cd ptxdist-0.10.4
˜/local/ptxdist-0.10.4# ls -l

total 168
-rw-r--r-- 1 rsc ptx 1547 Jan 26 17:29 COMPILE-TEST
-rw-r--r-- 1 rsc ptx 18361 Dec 27 12:46 COPYING
-rw-r--r-- 1 rsc ptx 2084 Jan 31 08:20 CREDITS
-rw-r--r-- 1 rsc ptx 41309 Feb 3 08:23 ChangeLog
drwxr-sr-x 3 rsc ptx 4096 Dec 27 12:46 Documentation
-rw-r--r-- 1 rsc ptx 58 Dec 27 12:46 INSTALL
-rw-r--r-- 1 rsc ptx 1275 Mar 8 18:05 Makefile
-rw-r--r-- 1 rsc ptx 1216 Mar 8 18:03 Makefile.in

5

1 PTXdist Installation

-rw-r--r-- 1 rsc ptx 3415 Feb 19 22:58 README
-rw-r--r-- 1 rsc ptx 949 Jan 26 17:29 README.Toolchains
-rw-r--r-- 1 rsc ptx 835 Dec 27 12:46 SPECIFICATION
-rw-r--r-- 1 rsc ptx 8927 Mar 1 07:36 TODO
-rw-r--r-- 1 rsc ptx 1901 Jan 26 17:29 TOOLCHAINS
drwxr-sr-x 3 rsc ptx 4096 Mar 8 18:44 bin
drwxr-sr-x 11 rsc ptx 4096 Mar 8 19:36 config
-rwxr-xr-x 1 rsc ptx 2306 Mar 8 18:03 configure
drwxr-sr-x 106 rsc ptx 4096 Mar 5 16:12 patches
drwxr-sr-x 4 rsc ptx 4096 Dec 27 12:45 pending_patches
drwxr-sr-x 35 rsc ptx 4096 Mar 4 16:49 projects
drwxr-sr-x 4 rsc ptx 20480 Mar 8 20:03 rules
drwxr-sr-x 7 rsc ptx 4096 Mar 8 18:07 scripts
drwxr-sr-x 3 rsc ptx 4096 Feb 11 13:42 tests

The PTXdist installation is based on GNU autotools, so the first thing to be done now is to
configure the packet:

˜/local/ptxdist-0.10.4# ./configure
checking version=0.10.4
checking prefix=/usr/local
checking topdir=/home/username/tmp/ptxdist-0.10.4
checking instdir=/usr/local/lib/ptxdist-0.10.4
creating Makefile
creating rules/Kconfig

Without further arguments PTXdist is configured to be installed into /usr/local , which
is the standard location for user installed programs. To change the installation path to
anything non-standard, we use the --prefix argument to the configure script. The
--help option offers more information about what else can be changed for the installation
process.

The installation paths are configured in a way that several PTXdist versions can be installed
in parallel. So if an old version of PTXdist is already installed there is no need to remove it.

One of the most important tasks for the configure script is to find out if all the programs
PTXdist depends on are already present on the development host. The script will stop with
an error message in case something is missing. If this happens, the missing tools have to
be installed from the distribution befor re-running the configure script.

6

1.3 Installation from the Sources

��
��
!

In this early PTXdist version not all tests are implemented in the configure
script yet. So if something goes wrong or you don’t understand some error
messages send a mail to support@pengutronix.de and help us improve
the tool.

When the configure script is finished successfully, we can now run

˜/local/ptxdist-0.10.4# make

All program parts are being compiled, and if there are no errors we can now install PTXdist
into it’s final location. In order to write to /usr/local , this step has to be performed as
root:

˜/local/ptxdist-0.10.4# su
[enter root password]
/home/username/local/ptxdist-0.10.4# make install
[...]

If we don’t have root access to the machine it is also possible to install into some other di-
rectory with the --prefix option. We need to take care that the bin/ directory below the
new installation dir is added to our $PATHenvironment variable (for example by exporting
it in ˜/.bashrc).

The installation is now done, so the temporary folder may now be removed

˜/local/ptxdist-0.10.4# cd
˜# rm -fr local/ptxdist-0.10.4

7

2 Toolchain

Before we can start building our first userland we need a cross toolchain. On Linux,
toolchains are no monolithic beasts. Most parts of what we need to cross compile code
for the embedded target comes from the GNU Compiler Collection, gcc. The gcc packet
includes the compiler frontend, gcc , plus several backend tools (cc1, g++, ld etc.) which
actually perform the different stages of the compile process. gcc does not contain the as-
sembler, so we also need the GNU Binutils package which provides lowlevel stuff.

Cross compilers and tools are usually named like the corresponding host tool, but with a
prefix – the GNU target. For example, the cross compilers for ARM and powerpc may look
like

• arm-softfloat-linux-gnu-gcc
• powerpc-unknown-linux-gnu-gcc

With these compiler frontends we can convert e.g. a C program into binary code for the
machine. So for example if a C program is to be compiled natively, it works like this:

˜# gcc test.c -o test

To build the same binary for the ARM architecture we have to use the cross compiler in-
stead of the native one:

˜# arm-softfloat-linux-gnu-gcc test.c -o test

Also part of what we consider to be the ”toolchain” is the runtime library (libc, dynamic
linker). All programs running on the embedded system are linked against the libc, which
also offers the interface from user space functions to the kernel.

The compiler and libc are very tightly coupled components: the second stage compiler,
which is used to build normal user space code, is being built against the libc itself. For
example, if the target does not contain a hardware floating point unit, but the toolchain
generates floating point code, it will fail. This is also the case when the toolchain builds
code optimized for i686 CPUs, whereas the target is i586.

8

2.1 Using Existing Toolchains

So in order to make things working consistently it is necessary that the runtime libc is
identical with the libc the compiler was built against.

PTXdist doesn’t contain a pre-built binary toolchain. Remember that it’s not a distribution
but a development tool. But it can be used to build a toolchain for our target. Building the
toolchain usually has only to be done once. It may be a good idea to do that over night,
because it may take several hours, depending on the target architecture and development
host power.

2.1 Using Existing Toolchains

If a toolchain is already installed which is known to be working, the toolchain building step
with PTXdist may be omitted. We have to make sure that the PATH environment variable
points to the directory containing the toolchain components.

��
��
!

The projects shipped with PTXdist have been tested with the toolchains built
with the same PTXdist version. So if an external toolchain is being used which
isn’t known to be stable, a target may fail. Note that not all compiler versions
work properly in a cross environment.

2.2 Toolchain Building

PTXdist has several example projects included to build toolchains for different architec-
tures. To find out which example projects are being shipped with PTXdist we use the
ptxdist projects command.

As toolchain projects always start with toolchain , we can restrict the output to only
showing the toolchains:

˜# ptxdist projects | grep toolchain_
toolchain_arm-softfloat-linux-gnu-4.0.2_glibc_2.3.6_linux_2.6.14
toolchain_i586-unknown-linux-gnu-4.0.2_glibc_2.3.6_linux_2.6.14
toolchain_powerpc-unknown-linux-gnu-4.0.2_glibc-2.3.6_linux_2.6.13

PTXdist toolchains, internally built with crosstool (a community provided script to
build cross toolchains in a unified way), by default are being installed into the stan-
dard directory /opt/ptxdist-0.10.4/ <gcc-glibc-version >/ <gnu-target >.

9

2 Toolchain

So for example for the gcc-4.0.2 and glibc-2.3.6 based ARM toolchain with soft-
ware floating point support mentioned above, the toolchain directory shall be
/opt/ptxdist-0.10.4/gcc-4.0.2-glibc-2.3.6/arm-softfloat-linux-gnu .

A PTXdist project generally allows to build into some project defined directory; all
toolchain projects that come with PTXdist are configured to use the standard installation
paths mentioned above.

��
��
!

Usually the /opt directory is not world writable. So in order to build our
toolchain into that directory we need to use a root account to change the per-
missions so that the user can write (mkdir /opt/ptxdist-0.10.4;
chown <username> /opt/ptxdist- 0.10.4; chmod a+rwx
/opt/ptxdist-0.10.4).

To compile and install the toolchains we have to clone one of the predefined PTXdist
toolchain projects. In this book we will build all of our stuff in $HOME/work. If this
directory does not exist yet, we create it and change into it with

˜# cd
˜# mkdir work
˜# cd work

Now we clone the PowerPC toolchain project for the phyCORE-MPC5200B. ”Cloning”
means that we create a local working copy of the project shipped with PTXdist:

˜/work# ptxdist clone
toolchain powerpc-unknown-linux-gnu-4.0.2 glibc-2.3.6 linux 2.6.13
cross-toolchain

The first argument to the ptxdist clone command is the project to be cloned, the second
one is the name of our working copy.

Now that we have changed into the toolchain project directory we can order PTXdist to
build our toolchain:

˜/work# cd cross-toolchain
˜/work/cross-toolchain# ptxdist go

At this stage we have to go to our boss and tell him that it’s probably time to go home for
the day. Even on reasonably fast machines the time to build a cross toolchain is something
like around 30 minutes up to one hour. Another possibility is to read the next chapters of
this manual, to find out how to start a new project.

When the compiler is finished, PTXdist is ready for prime time and we can continue with
our first project.

10

3 Building phyCORE-MPC5200B’s root
filesystem

3.1 Our First Project

After having successfully built a toolchain for the target CPU, we can proceed with building
our first ”project”. Following the PTXdist nomenclature, a ”project” is a configuration that
specifies which ”packets” (programs) should go into a root filesystem.

In order to build a project we have to unpack the OSELAS.BSP-phyCORE-MPC5200B-1 for
the phyCORE-MPC5200B:

˜$ tar -zxf OSELAS.BSP-phyCORE-MPC5200B-1.tar.gz
˜$ cd OSELAS.BSP-phyCORE-MPC5200B-1

Before we can actually start compiling our project, we’ll have to specify which toolchain
shall be used:

˜/OSELAS.BSP-phyCORE-MPC5200B-1$ ptxdist toolchain
toolchain
/opt/ptxdist-0.10.4/gcc-4.0.2-glibc-2.3.6/
powerpc-unknown-linux-gnu/bin

3.2 Compiling the Root Filesystem

Now everything is prepared for PTXdist to compile our root filesystem. Starting the en-
gines is simply done with:

˜/OSELAS.BSP-phyCORE-MPC5200B-1$ ptxdist go

PTXdist does now automatically find out from the ptxconfig file which packages belong
to the projects and starts compiling their ”targetinstall” stages (that one that actually puts
the compiled binaries into the root filesystem). While doing this, PTXdist finds out about
all the dependencies between the packets and brings them into the correct order.

11

3 Building phyCORE-MPC5200B’s root filesystem

While the command ptxdist go is running we can watch it building all the different
stages of a packet. In the end the final root filesystem for the target board can be found in
the root/ directory and a bunch of .ipkg packets in the images/ directory, containing the
single applications the root filesystem consists of.

There are two things which are different between the ”final” root filesystem to be flashed
into the embedded system and the root/ tree: the device nodes are missing1 and the access
permissions are incorrect2.

3.3 Building a Flash Image

PTXdist can build a flash image from the root/ tree. As all necessary parameters for the
phyCORE-MPC5200B are configured in the ptxconfig file, all we need to do is to run

˜/OSELAS.BSP-phyCORE-MPC5200B-1$ ptxdist images

Now the images/ directory contains a JFFS2 image (root.jffs2).

So after running ”ptxdist go ” and ”ptxdist images ”, we generally find the follow-
ing directories in the project workspace:

• in root/ a complete root filesystem to run on our target
(to be used as an NFS based filesystem)

• in images/ everything we need on our target packetised for easy handling
(to be used for running the target stand alone)

• in local/ a build environment to be used for external software projects

1There is no way to build them as a normal user, and PTXdist should never be run with root permissions.
2It is not possible to chown files for example to root.

12

4 Booting Linux

Now that there is a root filesystem in our workspace we’ll have to make it visible to the
phyCORE-MPC5200B. There are two possibilities to do this:

1. Booting from the development host, via network.
2. Making the root filesystem persistent in the onboard flash.

Figure 4.1: Booting the root filesystem, built with PTXdist, from the host via network and from flash.

Figure 4.1 shows both methods. On the left side the development host is connected to the
phyCORE-MPC5200B with a serial nullmodem cable and via ethernet; the embedded board
boots into the bootloader, then issues a TFTP request on the network and boots the kernel
from the TFTP server on the host. Then, after decompressing the kernel into the RAM and
starting it, the kernel mounts it’s root filesystem via NFS from the original location of the
root/ directory in our PTXdist workspace.

13

4 Booting Linux

The other way is to provide all needed components to run on the traget itself. The Linux
kernel and the root filesystem is persistent in target’s flash. This means the only connection
needed is the nullmodem cable to see what is happen on our target.

This chapter describes how to setup our target with features supported by PTXdist to sim-
plify this challange.

4.1 Target Side Preparation

The phyCORE-MPC5200B uses U-Boot as its bootloader. U-Boot can be customised
with environment variables to support any boot constellation. OSELAS.BSP-phyCORE-
MPC5200B-1 comes with a predefined environment setup to easily bring up the phyCORE-
MPC5200B.

14

4.2 Default U-Boot environment

4.2 Default U-Boot environment

4.2.1 Stand alone

This could be the default U-Boot environment, if we boot stand alone from flash.

Variable Value Meaning
autostart yes after timeout U-Boot runs any-

thing in bootcmd
baudrate 115200 baudrate to use in the serial con-

sole
ethaddr 00:50:C2:3B:A8:AA unique hardware address
bootdelay 2 time to wait for any key until

auto boot starts
bootcmd run setup bootargs; fsload

/boot/uImage; bootm
commands to run after timeout
or when boot is entered

setup bootargs setenv bootargs
root=/dev/mtdblock0
rootfstype=jffs2
console=ttyPSC2,$(baudrate)n8
$(mtdparts)

bootargs contents is for-
warded to the starting kernel

mtdparts mtdparts=phys mapped flash:15m
(jffs2),256k(uboot)ro,-(space)

Partition definition defined here
for easier modification, used in
bootargs

mtdids nor0=phys mapped flash Reference U-Boot’s names with
Linux’s names

partition nor0,0 define the partition where all file
operations should work on

15

4 Booting Linux

4.2.2 Network based

This could be the default U-Boot environment, if we boot all things needed (kernel image
and root filesystem) from our host.

Variable Value Meaning
autostart yes after timeout U-Boot runs any-

thing in bootcmd
baudrate 115200 baudrate to use in the serial con-

sole
ethaddr 00:50:C2:3B:A8:AA unique hardware address
bootdelay 2 time to wait for any key until

auto boot starts
hostname ppc5200 used for kernel’s network setup
bootcmd run setup bootargs; tftpboot commands to run after timeout

or when boot is entered
setup bootargs setenv bootargs root=/dev/nfs rw

nfsroot=$(serverip):$(nfsrootfs)
ip=$(ipaddr):$(serverip):$(gatewayip)
::$(hostname)::off
console=ttyPSC2,$(baudrate)n8
$(mtdparts)

bootargs contents is for-
warded to the starting kernel

mtdparts mtdparts=phys mapped flash:15m
(jffs2),256k(uboot)ro,-(space)

Partition definition defined here
for easier modification, used in
bootargs

netmask 255.255.255.0 netmask to use
serverip 192.168.23.1 IP of the server to load the ker-

nel image and to mount the NFS
root filesystem (if no DHCP is
used)

ipaddr 192.168.23.108 Targets own IP (if no DHCP is
used)

gatewayip 192.168.23.1 Gateway to use (if no DHCP is
used)

nfsrootfs /ptx/work/jbe/rootnptl Path to mount as root filesystem
on server

bootfile uImage Name of the file to load as kernel
image from server

Usually the environment doesn’t have to be set manually on our target. PTXdist comes
with an automated setup procedure to achieve a correct environment on the target.

16

4.3 Remote-Booting Linux

Due to the fact some of the values of these U-Boot’s environment variables must meet our
local network environment and development host settings we have to define them prior to
running the automated setup procedure.

Note: At this point of time it makes sense to check if the serial connection is already work-
ing, because it is essential for any further step we will do.
We can try to connect to the target with our favorite terminal application (minicom or
kermit for example). With a powered target we identify the correct physical serial port
and ensure that the communication is working.
Make sure to leave this terminal application to unlock the serial port prior to the next steps.

To set up development host and target specific value settings we run the command

˜# ptxdist boardsetup

We navigate to ”Network Configuration” and replace the default settings with our local
network settings. In the next step we also should check if the ”Host’s Serial Configuration”
entries meet our local development host settings. Especially the ”serial port” must corre-
spond to our real physical connection. At least - to make the automated setup procedure
work - the ”uboot prompt” entry must be PCM026> .

”Exit” the dialouge and and save your new settings.

The command

˜# ptxdist test setenv

now will automatically set up a correct default environment on the phyCORE-MPC5200B.
It should output a line like this when it was successfull:

u-boot: flashing standard environment PASS

Note: If it fails, reading test.log will give further information about why it has failed.

We now must restart the phyCORE-MPC5200B to activate the new environment settings.
Then we should run the ping command on the target’s ip address to check if the network
settings are working correctly on the target.

4.3 Remote-Booting Linux

The first method we probably want to try after building a root filesystem is the network-
remote boot variant. All we need is a network interface on the embedded board and a
network aware bootloader which can fetch the kernel from a TFTP server.

The network boot method has the advantage that we don’t have to do any flashing at all
to ”see” a file on the target board: All we have to do is to copy it to some location in
the root/ directory and it simply ”appears” on the embedded device. This is especially
helpful during the development phase of a project, where things are changing frequently.

17

4 Booting Linux

4.3.1 Development Host Preparations

On the development host a TFTP server has to be installed and configured. The exact
method to do this is distribution specific; as the TFTP server is usually started by one of the
inetd servers, the manual sections describing inetd or xinetd should be consulted.

Usually TFTP servers are using the /tftpboot directory to fetch files from, so if we want
to push kernel images to this directory we have to make sure we are able to write there.
As the access permissions are normally configured in a way to let only user root write to
/tftpboot we have to gain access; a safe method is to use the sudo(8) command to push
our kernel:

˜# sudo cp images/linuximage /tftpboot/uImage-pcm026

The NFS server is not restricted to a certain filesystem location, so all we have to do on
most distributions is to configure /etc/exports and export our root filesystem to the
embedded network. In this example file the whole work directory is exported, and the
”lab network” between the development host is 192.168.23.0, so the IP addresses have to
be adapted to the local needs:

/home/<user>/work 192.168.23.0/255.255.255.0(rw,no_root_squash,sync)

Note: Replace <user> with your home directory name.

4.3.2 Preparations on the Embedded Board

We already provided the phyCORE-MPC5200B with the default environment at page 15.
So there is no additional preparation required here.

4.3.3 Booting the Embedded Board

The default environment coming with the OSELAS.BSP-phyCORE-MPC5200B-1 has a pre-
defined script for booting from NFS. To use it, we can simple enter

PCM026> run bootcmd net

This command should boot phyCORE-MPC5200B into the login prompt.

As U-Boot automatically runs the bootcmd environment variable as a script after power-
on, we set this variable to start from NFS automatically:

PCM026> setenv bootcmd ’run bootcmd net’

After the next reset or powercycle of the board it should boot the kernel from the TFTP
server, start it and mount the root filesystem via NFS.

Note: The default login account is root with an empty password.

18

4.4 Stand-Alone Booting Linux

4.4 Stand-Alone Booting Linux

Usually, after working with the NFS-Root system for some time, the rootfs has to be made
persistent in the onboard flash of the phyCORE-MPC5200B, without requiring the network
infrastructure any more. The following sections describe the steps necessary to bring the
rootfs into the onboard flash.

Only for preparation we need a network connection to the embedded board and a network
aware bootloader which can fetch any data from a TFTP server.

After preparation is done, the phyCORE-MPC5200B can work independently from the de-
velopment host. We can ”cut” the network (and serial cable) and the phyCORE-MPC5200B
will continue to work.

4.4.1 Development Host Preparations

If we already booted the phyCORE-MPC5200B remotly (as described in the privious sec-
tion) all of the development host preparations are done.

If not then on the development host has a TFTP server to be installed and configured. The
exact method to do this is distribution specific; as the TFTP server is usually started by one
of the inetd servers, the manual sections describing inetd or xinetd should be consulted.

Usually TFTP servers are using the /tftpboot directory to fetch files from, so if we want
to push data files to this directory we have to make sure we are able to write there. As
the access permissions are normally configured in a way to let only user root write to
/tftpboot we have to gain access.

4.4.2 Preparations on the Embedded Board

To boot phyCORE-MPC5200B stand-alone anything needed to run a Linux system must be
locally accessible. So at this point of time we must replace any current content in phyCORE-
MPC5200B’s flash memory. To simplify this, OSELAS.BSP-phyCORE-MPC5200B-1 comes
with an automated setup procedure for this step.

To use this procedure run the command

˜# ptxdist test flash

Note: This command requires a serial and a network connection. The network connection
can be cut afterwards this step.

This command will automatically write a root filesystem to the correct flash partition on
the phyCORE-MPC5200B. It only works, if we priviously setup the environment variables

19

4 Booting Linux

successfully (described at page 15).
The command should outputs a line like this when it was successfull:

u-boot: flashing root image PASS

Note: If it fails reading test.log will give further information about why it was failing.

4.4.3 Booting the Embedded Board

The default environment coming with the OSELAS.BSP-phyCORE-MPC5200B-1 has a pre-
defined script for booting stand-alone. To use it, we can simple enter

PCM026> run bootcmd flash

This command should boot phyCORE-MPC5200B into the login prompt.

As U-Boot automatically runs the bootcmd environment variable as a script after power-
on, we set this variable to start from NFS automatically:

PCM026> setenv bootcmd ’run bootcmd flash’

After the next reset or powercycle of the board it should boot the kernel from the flash, start
it and mount the root filesystem also from flash.

Note: The default login account is root with an empty password.

20

5 Acessing Peripherals

Phytec’s phyCORE-MPC5200B starter kit consists of the following individual boards:

1. The phyCORE-MPC5200B module itself, containing the MPC5200B processor, RAM,
flash and several other peripherals.

2. The starter kit baseboard.

To achieve maximum software re-use, the Linux kernel offers a sophisticated infrastructure,
layering software components into board specific parts. The OSELAS.BSP() tries to modu-
larize the kit features as far as possible; that means that when a customized baseboards or
even customer specific module is developed, most of the software support can be re-used
without error prone copy-and-paste. So the kernel code corresponding to the boards above
can be found in the kernel source tree at:

1. arch/ppc/platforms/pcm026.c for the processor module

In fact, software re-use is one of the most important features of the Linux kernel and espe-
cially of the PowerPC port, which always had to fight with an insane number of possibili-
ties of the System-on-Chip CPUs.

��
��
!

Note that the huge variety of possibilities offered by the phyCORE modules
makes it difficult to have a completely generic implementation on the operat-
ing system side. Nevertheless, the OSELAS.BSP() can easily be adapted
to customer specific variants. In case of interest, contact the Pengutronix
support (support@pengutronix.de) and ask for a dedicated offer.

The following sections provide an overview of the supported hardware components and
their operating system drivers.

21

5 Acessing Peripherals

5.1 NOR Flash Memory

Linux offers the Memory Technology Devices Interface (MTD) to access low level flash
chips, directly connected to a SoC CPU.

Older versions of the Linux kernel had separate mapping drivers for each board, specifying
the flash layout in a driver. Modern kernels offer a method to define flash partitions on the
kernel command line, using the ”mtdparts” command line argument:

mtdparts=phys_mapped_flash:15m(jffs2),256k(uboot)ro,-(space)

This line, for example, specifies several partitions with their size and name which can
be used as /dev/mtd0, /dev/mtd1 etc. from Linux. Additionally, this argument is also
understood by reasonably new U-Boot bootloaders, so if there is any need to change the
partitioning layout, the U-Boot environment is the only place where the layout has to be
changed. In this section we assume that the standard configuration delivered with the
OSELAS.BSP-phyCORE-MPC5200B-1 is being used.

From userspace the flash partitions can be accessed as

• /dev/mtdblock0 (Linux rootfs partition)
• /dev/mtdblock1 (U-Boot partition)
• /dev/mtdblock2 (spare due to reset vector restrictions)

Only /dev/mtdblock0 has a filesystem, so the other partitions cannot be mounted into
the rootfs. The only way to access them is by pushing a prepared flash image into the
corresponding /dev/mtd device node.

5.2 CAN Bus

The MPC5200B has an OnChip based CAN controller with two channels, which is sup-
ported by drivers using the (currently work-in-progress) proposed Linux standard CAN
framework ”Socket-CAN”. Using this framework, CAN interfaces can be programmed
with the BSD socket API.

��
��
!

The Socket-CAN API is still work in progress and was not submitted to the
upstream kernel maintainers yet. Although we think that the final API will be
very similar to what we have now, be prepared that the API can break at any
time without notice.

22

5.2 CAN Bus

5.2.1 Socket-CAN

The CAN (Controller Area Network1) bus offers a low-bandwidth, prioritised message
fieldbus for communication between microcontrollers. Unfortunately, CAN was not de-
signed with the ISO/OSI layer model in mind, so most CAN APIs available throughout
the industry don’t support a clean separation between the different logical protocol layers,
like for example known from ethernet.

The Socket-CAN framework for Linux extends the BSD socket API concept towards CAN
bus. It consists of

• a core part (can.ko)
• several protocol drivers (can raw.ko, maybe other protocols)
• chip drivers (e. g. sja1000.ko, nioscan.ko etc.)

So in order to start working with CAN interfaces we’ll have to make sure all necessary
drivers are loaded.

5.2.2 Starting and Configuring Interfaces from the Command Line

If all drivers are present in the kernel, ”ifconfig -a” shows which network interfaces are
available; as Socket-CAN chip interfaces are normal Linux network devices (with some
additional features special to CAN), not only the ethernet devices can be observed but also
CAN ports.

For this example, we are only interested in the first CAN port, so the information for can0
looks like

˜# ifconfig can0
can0 Link encap:UNSPEC HWaddr
00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

NOARP MTU:8 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:90 Base address:0x8400

The output contains the usual parameters also shown for ethernet interfaces, so not all of
these are necessarily relevant for CAN (for example the MAC address). These parameters
contain useful information:

1ISO 11898/11519

23

5 Acessing Peripherals

Field Description
can0 Interface Name
NOARP CAN cannot use ARP protocol
MTU Maximum Transfer Unit, always 8
RX packets Number of Received Packets
TX packets Number of Transmitted Packets
RX bytes Number of Received Bytes
TX bytes Number of Transmitted Bytes
errors... Bus Error Statistics

Inferfaces shown by the ”ifconfig -a” command can be configured with canconfig. This
command adds CAN specific configuration possibilities for network interfaces, similar to
for example ”iwconfig” for wireless ethernet cards.

The baudrate for can0 can now be changed:

˜# canconfig can0 baudrate 250

and the interface is started with

˜# ifconfig can0 up

If the interface happens to fall into ”bus off” mode, canconfig can also be used to bring
the interface back into ”normal” mode:

˜# canconfig can0 mode start

More details about the ioctl() commands used by canconfig can be found in the
sourcecode of the canconfig utility (canutils/canconfig.c in the canutils source
code package).

5.2.3 Using the CAN Interfaces from the Command Line

After successfully configuring the local CAN interface and attaching some kind of CAN
devices to this physical bus, we can test this connection with command line tools.

The tools cansend and candump are dedicated to this purpose.

To send a simple CAN message with ID 0x20 and one data byte of value 0xAA just enter:

˜# cansend can0 --identifier=0x20 0xAA

24

5.2 CAN Bus

To receive CAN messages run the candump command:

˜# candump can0
interface = can0, family = 29, type = 3, proto = 0
<0x020> [1] aa

The output of candump shown in this example was the result of running the cansend
example above on a different machine.

See cansend’s and candump’s manual pages for further information about using and op-
tions.

5.2.4 Programming CAN Interfaces in C

With Socket-CAN we can use the standard Berkeley Socket Interface for sending and re-
ceiving CAN messages. The first step is to get a socket, using the socket() function:

int socket(int domain, int type, int protocol);

We have to prepare the protocol family (domain), which is ”Protocol Family CAN
(PF CAN), the type (a raw socket, SOCK RAW) and the protocol (CAN PROTO RAW) for
the call to the socket() function:

domain = PF_CAN;
type = SOCK_RAW;
protocol = CAN_PROTO_RAW;

int sockdf;
sockfd = socket(PF_CAN, SOCK_RAW, CAN_PROTO_RAW);

If everything succeeds, a filedescriptor for the new socket will be returned; on error, the
socket() function returns -1.

Now we have to bind the socket to a CAN interface and specify which CAN identifiers
we are interested in for reading. Binding to an interface is done with a call to the bind()
function:

int bind(int sockfd,
struct sockaddr *my_addr,
socklen_t addrlen);

25

5 Acessing Peripherals

sockfd is the filedescriptor of the socket we have created in the last step; my addr is a
pointer to a datastructure describing the interface and the CAN indentifier. The datastruc-
ture looks like this as is declared in can.h :

struct sockaddr_can {
sa_family_t can_family;
int can_ifindex;
int can_id;

};

struct sockaddr_can adr;

can family is in our case again PF CAN:

addr.can_family = PF_CAN;

can ifindex is the index number of the interface we want to send or listen to. The de-
coding from the symbolic string ”can0” to the interface index is done with an ioctl:

struct ifreq ifr;

ifr.ifr_name = "can0";
ioctl(sockfd, SIOCGIFINDEX, &ifr);
addr.can_ifindex = ifr.ifr_ifindex;

It’s up to the user to specify which CAN identifier he is interested in; for unfiltered traffic,
the CAN FLAG ALL macro can be used:

addr.can_id = CAN_FLAG_ALL;

Now that the sockaddr and addr structs are defined, we can actually call bind():

bind(sockfd, (struct sockaddr *)&addr, sizeof(addr));

When bind returns successfully with 0, the socket is open and ready to receive or send data.

5.2.5 Sending CAN Messages

To send a CAN frame, we put the can id , can dlc and payload files into a can frame
and call the write function, looking like

26

5.2 CAN Bus

ssize_t write(int fd, const void *buf, size_t count);

In our example, the call is

write(sockfd, &frame, sizeof(frame));

5.2.6 Receiving CAN Messages

To receive messages, we call the read function:

ssize_t read(int fd, void *buf, size_t count);

fd is the filedescriptor we want to read from, buf is a pointer to the memory block to write
to and count is the length of this block. With one call to the read function we read one
frame from the socket.

struct can_frame {
int can_id;
int can_dlc;
union {

int64_t data_64;
int32_t data_32[2];
int16_t data_16[4];
int8_t data_8[8];
uint64_t data_u64;
uint32_t data_u32[2];
uint16_t data_u16[4];
uint8_t data_u8[8];
int8_t data[8]; /* shortcut */

} payload;
};
struct can_frame frame;

read(sockfd, &frame, sizeof(struct can_frame));

The struct can frame contains the CAN identifier (can id) and the length of the CAN
message (can dlc) as well as the payload.

In case the received CAN frame had the RTR (Remote Transmission Request) bit or the
Extended bit set, the corresponding flags can be read from the struct can frame. The flags
are defined like this:

27

5 Acessing Peripherals

#define CAN_FLAG_RTR 0x40000000 /* remote transmission flag*/
#define CAN_FLAG_EXTENDED 0x80000000 /* extended frame */

To filter out the flags, corresponding masks are defined in can.h:

#define CAN_ID_EXT_MASK 0x1FFFFFFF /* extended CAN id mask */
#define CAN_ID_STD_MASK 0x000007FF /* standard CAN id mask */

5.2.7 Closing Interfaces & Further Reading

If the userspace application is finished, the socket filedescriptors have to be closed:

int close(int fd);

So in our example we’ll have to close the socket with:

close(sockfd);

More details about the mentioned functions can be taken from the Linux manual pages:

• man 2 socket
• man 2 bind
• man 2 write
• man 2 read
• man 2 close

5.2.8 Getting help

Community supports three CAN specific mailings lists, hosted at berlios. You can subscribe
to this lists for further discussion and help.

http://lists.berlios.de/mailman/listinfo/

Search for the lists:

• Socketcan-core
Discussion about the socket-CAN core system

• Socketcan-users
Help and discussion about using socket-CAN

• Socketcan-commit

28

5.3 Network

5.3 Network

The phyCORE-MPC5200B module has an OnChip ethernet chip, which is being used to
provide the eth0 network interface. The interface offers a standard Linux network port
which can be programmed using the BSD socket interface.

5.4 FPGA support

The phyCORE-MPC5200B is shipped with an Altera FPGA of type Cyclone II
EP2C8F256C8N. This FPGA is a general purpose device with no special dedication
when shipped. Its up to you to blow life in it with your own firmware, for example to do
some high speed signal processing. The OSELAS.BSP-phyCORE-MPC5200B-1 provides a
mechanism to load the FPGA firmware while the whole system is already running.

5.4.1 General

The source archive contains the files fpga.c and Makefile . During the build process, a
module named fpga.ko is created. Here’s how to achieve this:
We locate the makefile after unpacking and change the KDIR variable in this makefile to
the location of our own kernel source directory and then start compiling. We make sure to
include the path to the binary of the crosscompiler in our searchpath.

Putting the mechanism to work is as easy as loading the module with parameter
firmware= <filename.rbf >.
The firmware must be in RBF (Altera raw binary format) and stored in the place where the
firmware agent of our embedded system will expect it. (It depends on the configuration of
our udev daemon. Usually it should be /lib/firmware/)

In practice, the module is loaded like in this example:

˜# insmod fpga.ko firmware=my_own_firmware.rbf

The module assumes specific hardware connections between processor and FPGA which
are shown in the following table. The user does not need to take care about these when
using the standard hardware.

See phyCORE-MPC5200B’s datasheet for FPGA’s pin assignment.

29

5 Acessing Peripherals

FPGA Pin MPC5200B Pin Pin Loc. Pin Name Pin Conf.
nCONFIG UART6 CTS TTL PSC6 1 GPIO WKUP 5 out
CONFIG DONE UART6 RXD TTL PSC6 0 GPIO WKUP 4 in
nSTATUS GPIO7 GPIO WKUP 7 in
DCLK UART6 RTS TTL PSC6 3 GPIO IRDA 1 out
DATA0 UART6 TXD TTL PSC6 2 GPIO IRDA 0 out

Table 5.1: FPGA pin connections

5.4.2 Demo

The BSP is shipped with a simple demo. To download it into the FPGA you should enter:

˜# insmod /home/fpga.ko firmware=MPC_to_WBSlave.rbf

It supports five 32 bit registers at the baseaddess CS1 (chip select) is using.

• Register 0 at CS1 baseaddress + 0x00

• Register 1 at CS1 baseaddress + 0x04

• Register 2 at CS1 baseaddress + 0x08

• Register 3 at CS1 baseaddress + 0x0C

• Register 4 at CS1 baseaddress + 0x10 (mirrored up to the end of CS1 address space)

In the first step to access the FPGA registers we do not need a device driver. Due to Pow-
erPC architecture maps devices in memory we can use a small tool called memedit for
testing.

The most important part is, where the physical baseaddress of processor’s CS1 is located.
Usually we can skip this part, the setup is always the same: Physical address starts at
0xe0000000 and ends at 0xe1ff0000 . But in case of trouble, it could be helpfull to check
if the CS1 is on its right location:

To gain access to processor’s control registers we use the memedit tool on the target:

˜# memedit /dev/mem

This tool works interactive, so the next step is to map some physical memory space into the
memory of the memedit process.

30

5.4 FPGA support

- > map 0xf0000000 0x1000

0xf0000000 is the base address of the MBAR area, where all processor and its chipset
internal control registers are mapped. Next we read back the CS1 configuration register
(see processor’s manual for further descriptions about location and meaning of these type
of registers).

- > md 0x0c 0x10
0000000c: 0000e000 0000e1ff 0000fde0 0000fde7

0x0c is an offset to the MBAR (=0xf0000000) and is the start address of CS1. We read
back values 0x0000e000 (=start) and 0x0000e1ff (=end). The values have to be shifted
by 16 to get the real physical address. In this case it starts at 0xe0000000 and ends at
0xe1ff0000 .

Unmap the MBAR area first, to do the next step (do not leave memedit):

- > unmap

After ensuring the physical address area of CS1 we now can map this area to gain access to
the FPGA itself. When our mapping of CS1 differs we have to enter other values here. The
default should be:

- > map 0xe0000000 0x1ff0000

Now we can read and write into this area and - if the FPGA is ready to work - we can access
its registers.

- > md 0x0 0x20
00000000: 00000000 00000000 00000000 00000000
00000010: 00000000 00000000 00000000 00000000

After system reset everything should be zero. We do some writings to check the registers:

- > mm 0x0 0x10
new values:
0x00000000: 00000010
- > mm 0x4 0x20
new values:
0x00000004: 00000020
- > mm 0x8 0x30
new values:
0x00000008: 00000030
- > mm 0xC 0x40
new values:
0x0000000c: 00000040
- > mm 0x10 0x50

31

5 Acessing Peripherals

new values:
0x00000010: 00000050

And try to read back the written values:

- > md 0x0 0x20
00000000: 00000010 00000020 00000030 000000400...@
00000010: 00000050 00000050 00000050 00000050 ...P...P...P...P

We see the described behaviour of FPGA’s default firmware. Four single registers at offset
0x0,0x4,0x8 and 0xC, and a mirrored register until the end of FPGA’s area starting at offset
0x10.

32

6 Some hints on using
phyCORE-MPC5200B

6.1 Decreasing boot time

6.1.1 Easier and faster kernel load

Whenever we load the kernel image from a JFFS2 filesystem, U-Boot must scan the whole
flash partition to synchronise with the chains JFFS2 uses to handle the memory. This may
consume many seconds during which nothing else happens.

After the Linux kernel is up and running it has to scan the JFFS2 filesystem again. This also
takes some time during which the user of this system has to wait.

To avoid the first scan, we can create four partitions instead of three. The last two partitions
remain unchanged, these are U-Boot and the sparse space. We create an additial partition
located right before the second partition, with at least the size of one kernel image. For
example 2048k. The first partition is still the root filesystem.

The new mtdparts variable looks like this (see figure 6.1):

mtdparts=phys mapped flash:13m(jffs2),2048k(kernel),
256k(uboot)ro,-(sparse)

Figure 6.1: The flash device divided into four partitions.

33

6 Some hints on using phyCORE-MPC5200B

Now we can write a kernel image into the second partition. We don’t need a filesystem
in this partition, because it’s only a placeholder. Due to this, we can later boot this kernel
image with a simple command

PCM026> bootm 0xFFD00000 .

Note: 0xFFD00000 is the starting offset of the second partition.

It’s much faster, because there is no previous scan required.

6.1.2 Disable Console output while kernel startup

Console output during the kernel startup consumes a lot of time. Most of the information
we will see at this point of time are more useful when we are developing our system. If our
system runs in production it’s more useful to save time when booting. If we add the kernel
parameter quiet this will suppress printk messages. Note that printk messages are still
buffered in the kernel and can be retrieved after booting using the dmesg command.

When the init process starts the console is activated again.

34

	PTXdist Installation
	Building Blocks
	Prerequisites
	Installation from the Sources

	Toolchain
	Using Existing Toolchains
	Toolchain Building

	Building phyCORE-MPC5200B's root filesystem
	Our First Project
	Compiling the Root Filesystem
	Building a Flash Image

	Booting Linux
	Target Side Preparation
	Default U-Boot environment
	Stand alone
	Network based

	Remote-Booting Linux
	Development Host Preparations
	Preparations on the Embedded Board
	Booting the Embedded Board

	Stand-Alone Booting Linux
	Development Host Preparations
	Preparations on the Embedded Board
	Booting the Embedded Board

	Acessing Peripherals
	NOR Flash Memory
	CAN Bus
	Socket-CAN
	Starting and Configuring Interfaces from the Command Line
	Using the CAN Interfaces from the Command Line
	Programming CAN Interfaces in C
	Sending CAN Messages
	Receiving CAN Messages
	Closing Interfaces & Further Reading
	Getting help

	Network
	FPGA support
	General
	Demo

	Some hints on using phyCORE-MPC5200B
	Decreasing boot time
	Easier and faster kernel load
	Disable Console output while kernel startup

