
Pengutronix e. K.
Peiner Straße 6–8
31137 Hildesheim

+49 (0)51 21 / 20 69 17 – 0 (Fon)
+49 (0)51 21 / 20 69 17 – 55 55 (Fax)

info@pengutronix.de

© 2009 Pengutronix, Hildesheim – Rev. 1325:1326

Quickstart Manual
OSELAS.BSP()

Phytec phyCORE-PXA270

OSELAS.Support
OSELAS.Training
OSELAS.Development
OSELAS.Services

Contents

I OSELAS Quickstart for
Phytec phyCORE-PXA270 4

1 Getting a working Environment 5
1.1 Download Software Components . 5
1.2 PTXdist Installation . 5

1.2.1 Main Parts of PTXdist . 5
1.2.2 Extracting the Sources . 6
1.2.3 Prerequisites . 7
1.2.4 Configuring PTXdist . 8

1.3 Toolchains . 9
1.3.1 Using Existing Toolchains . 10
1.3.2 Building a Toolchain . 10
1.3.3 Building the OSELAS.Toolchain for OSELAS.BSP-Phytec-phyCORE-12 10
1.3.4 Protecting the Toolchain . 11

2 Building phyCORE-PXA270’s root filesystem 12
2.1 Extracting the Board Support Package . 12
2.2 Selecting a Software Platform . 13
2.3 Selecting a Hardware Platform . 13
2.4 Selecting a Toolchain . 13
2.5 Building the Root Filesystem . 14
2.6 Building an Image . 14
2.7 Target Side Preparation . 15
2.8 Stand-Alone Booting Linux . 16

2.8.1 Development Host Preparations . 17
2.8.2 Preparations on the Embedded Board . 17
2.8.3 Booting the Embedded Board . 18

2.9 Remote-Booting Linux . 18
2.9.1 Development Host Preparations . 18
2.9.2 Preparations on the Embedded Board . 19
2.9.3 Booting the Embedded Board . 19

3 Accessing Peripherals 20
3.1 NOR Flash . 20
3.2 PWM Units . 21
3.3 GPIO Events . 22
3.4 GPIO . 22
3.5 LCD Graphics . 23
3.6 SPI Master . 23
3.7 GPIO Expander MAX7301 . 24
3.8 MMC/SD Card . 24

2

Contents

3.9 AC97 Based Audio . 24
3.9.1 Sound Output . 25
3.9.2 Sound Record . 25
3.9.3 Advanced Sound Handling . 26

3.10 AC97 Based Touchscreen . 26
3.11 USB Host Controller Unit . 28
3.12 Network . 28
3.13 I²C Master . 28

3.13.1 I²C Realtime Clock RTC8564 . 28
3.13.2 I²C Device 24W32 . 28

3.14 Status LEDs . 29
3.15 Socket CAN . 29

3.15.1 About Socket-CAN . 29

4 Special Notes 31
4.1 Analysing the CAN Bus Data Transfer . 31

4.1.1 GPIO Usage Example . 32

5 Getting help 33
5.1 Mailing Lists . 33

5.1.1 About PTXdist in Particular . 33
5.1.2 About Embedded Linux in General . 33

5.2 News Groups . 33
5.2.1 About Linux in Embedded Environments . 33
5.2.2 About General Unix/Linux Questions . 33

5.3 Chat/IRC . 34
5.4 phyCORE-PXA270 Support Mailing List . 34
5.5 Commercial Support . 34

3

Part I

OSELAS Quickstart for
Phytec phyCORE-PXA270

4

1 Getting a working Environment

1.1 Download Software Components

In order to follow this manual, some software archives are needed. There are several possibilities how to get
these: either as part of an evaluation board package or by downloading them from the Pengutronix web site.

The central place for OSELAS related documentation is http://www.oselas.com. This website provides all
required packages and documentation (at least for software components which are available to the public).

To build OSELAS.BSP-Phytec-phyCORE-12, the following archives have to be available on the development host:

• ptxdist-1.99.12.tgz

• ptxdist-1.99.12-patches.tgz

• OSELAS.BSP-Phytec-phyCORE-12.tar.gz

• OSELAS.Toolchain-1.99.3.2.tar.bz2

If they are not available on the development system yet, it is necessary to get them.

1.2 PTXdist Installation

The PTXdist build system can be used to create a root filesystem for embedded Linux devices. In order to start
development with PTXdist it is necessary to install the software on the development system.

This chapter provides information about how to install and configure PTXdist on the development host.

1.2.1 Main Parts of PTXdist

The most important software component which is necessary to build an OSELAS.BSP() board support package
is the ptxdist tool. So before starting any work we’ll have to install PTXdist on the development host.

PTXdist consists of the following parts:

The ptxdist Program: ptxdist is installed on the development host during the installation process.
ptxdist is called to trigger any action, like building a software packet, cleaning up the tree etc. Usually
the ptxdist program is used in a workspace directory, which contains all project relevant files.

A Configuration System: The config system is used to customize a configuration, which contains information
about which packages have to be built and which options are selected.

Patches: Due to the fact that some upstream packages are not bug free – especially with regard to cross compi-
lation – it is often necessary to patch the original software. PTXdist contains amechanism to automatically
apply patches to packages. The patches are bundled into a separate archive. Nevertheless, they are nec-
essary to build a working system.

5

http://www.oselas.com

1 Getting a working Environment

Package Descriptions: For each software component there is a ”recipe” file, specifying which actions have to be
done to prepare and compile the software. Additionally, packages contain their configuration sniplet for
the config system.

Toolchains: PTXdist does not come with a pre-built binary toolchain. Nevertheless, PTXdist itself is able
to build toolchains, which are provided by the OSELAS.Toolchain() project. More in-deep information
about the OSELAS.Toolchain() project can be found here: http://www.pengutronix.de/oselas/
toolchain/index_en.html

Board Support Package This is an optional component, mostly shipped aside with a piece of hardware. There
are various BSP available, some are generic, some are intended for a specific hardware.

1.2.2 Extracting the Sources

To install PTXdist, at least two archives have to be extracted:

ptxdist-1.99.12.tgz The PTXdist software itself.

ptxdist-1.99.12-patches.tgz All patches against upstream software packets (known as the ’patch repository’).

ptxdist-1.99.12-projects.tgz Generic projects (optional), can be used as a starting point for self-built projects.

The PTXdist and patches packets have to be extracted into some temporary directory in order to be built before
the installation, for example the local/ directory in the user’s home. If this directory does not exist, we have to
create it and change into it:

~# cd
~# mkdir local
~# cd local

Next steps are to extract the archives:

~/local# tar -zxf ptxdist-1.99.12.tgz
~/local# tar -zxf ptxdist-1.99.12-patches.tgz

and if required the generic projects:

~/local# tar -zxf ptxdist-1.99.12-projects.tgz

If everything goes well, we now have a PTXdist-1.99.12 directory, so we can change into it:

~/local# cd ptxdist-1.99.12
~/local/ptxdist-1.99.12# ls -l
total 487
drwxr-xr-x 13 jb users 1024 Mar 23 13:25 ./
drwxr-xr-x 22 jb users 3072 Mar 23 13:25 ../
-rw-r--r-- 1 jb users 377 Feb 23 22:23 .gitignore
-rw-r--r-- 1 jb users 18361 Apr 24 2003 COPYING
-rw-r--r-- 1 jb users 3731 Mar 11 18:09 CREDITS
-rw-r--r-- 1 jb users 115540 Mar 7 15:25 ChangeLog
-rw-r--r-- 1 jb users 58 Apr 24 2003 INSTALL
-rw-r--r-- 1 jb users 2246 Feb 9 14:29 Makefile.in
-rw-r--r-- 1 jb users 4196 Jan 20 22:33 README
-rw-r--r-- 1 jb users 691 Apr 26 2007 REVISION_POLICY

6

http://www.pengutronix.de/oselas/toolchain/index_en.html
http://www.pengutronix.de/oselas/toolchain/index_en.html

1 Getting a working Environment

-rw-r--r-- 1 jb users 54219 Mar 23 10:51 TODO
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 autoconf/
-rwxr-xr-x 1 jb users 28 Jun 20 2006 autogen.sh*
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 bin/
drwxr-xr-x 6 jb users 1024 Mar 23 11:27 config/
-rwxr-xr-x 1 jb users 226185 Mar 23 11:27 configure*
-rw-r--r-- 1 jb users 12390 Mar 23 11:16 configure.ac
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 debian/
drwxr-xr-x 8 jb users 1024 Mar 23 11:27 generic/
drwxr-xr-x 164 jb users 4096 Mar 23 11:27 patches/
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 platforms/
drwxr-xr-x 4 jb users 1024 Mar 23 11:27 plugins/
drwxr-xr-x 6 jb users 30720 Mar 23 11:27 rules/
drwxr-xr-x 7 jb users 1024 Mar 23 11:27 scripts/
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 tests/

1.2.3 Prerequisites

Before PTXdist can be installed it has to be checked if all necessary programs are installed on the development
host. The configure script will stop if it discovers that something is missing.

The PTXdist installation is based on GNU autotools, so the first thing to be done now is to configure the packet:

~/local/ptxdist-1.99.12# ./configure

This will check your system for required components PTXdist relies on. If all required components are found the
output ends with:

[...]
checking whether /usr/bin/patch will work... yes

configure: creating ./config.status
config.status: creating Makefile
config.status: creating scripts/ptxdist_version.sh
config.status: creating rules/ptxdist-version.in

ptxdist version 1.99.12 configured.
Using '/usr/local' for installation prefix.

Report bugs to ptxdist@pengutronix.de

Without further arguments PTXdist is configured to be installed into/usr/local, which is the standard location
for user installed programs. To change the installation path to anything non-standard, we use the --prefix
argument to the configure script. The --help option offersmore information aboutwhat else can be changed
for the installation process.

The installation paths are configured in a way that several PTXdist versions can be installed in parallel. So if an
old version of PTXdist is already installed there is no need to remove it.

Oneof themost important tasks for theconfigure script is to find out if all the programsPTXdist depends on are
already present on the development host. The scriptwill stopwith an errormessage in case something ismissing.

7

1 Getting a working Environment

If this happens, the missing tools have to be installed from the distribution befor re-running the configure
script.

When the configure script is finished successfully, we can now run

~/local/ptxdist-1.99.12# make

All program parts are being compiled, and if there are no errors we can now install PTXdist into it’s final location.
In order to write to /usr/local, this step has to be performed as user root:

~/local/ptxdist-1.99.12# sudo make install
[enter root password]
[...]

If we don’t have root access to the machine it is also possible to install into some other directory with the
--prefix option. We need to take care that the bin/ directory below the new installation dir is added to our
$PATH environment variable (for example by exporting it in ˜/.bashrc).

The installation is now done, so the temporary folder may now be removed:

~/local/ptxdist-1.99.12# cd
~# rm -fr local

1.2.4 Configuring PTXdist

When using PTXdist for the first time, some setup properties have to be configured. Two settings are the most
important ones: Where to store the source packages and if a proxymust be used to gain access to the world wide
web.

Run PTXdist’s setup:

~# ptxdist setup

Due to PTXdist is working with sources only, it needs various source archives from the world wide web. If these
archives are not present on our host, PTXdist starts the wget command to download them on demand.

Proxy Setup

To do so, an internet access is required. If this access is managed by a proxy wget command must be adviced
to use it. PTXdist can be configured to advice the wget command automatically: Navigate to entry Proxies and
enter the required addresses and ports to access the proxy in the form:

<protocol>://<address>:<port>

Source Archive Location

Whenever PTXdist downloads source archives it stores these archives in a project localmanner. If we areworking
withmore than one project, every project would download its own required archives. To share all source archives
between all projects PTXdist can be configured to use only one archive directory for all projects it handles: Nav-
igate to menu entry Source Directory and enter the path to the directory where PTXdist should store archives to
share between projects.

8

1 Getting a working Environment

Generic Project Location

If we already installed the generic projects we should also configure PTXdist to know this location. If we already
did so, we can use the command ptxdist projects to get a list of available projects and ptxdist clone to
get a local working copy of a shared generic project.

Navigate to menu entry Project Searchpath and enter the path to projects that can be used in such a way. Here
we can configure more than one path, each part can be delemited by a colon. For example for PTXdist’s generic
projects and our own previous projects like this:

/usr/local/lib/ptxdist-1.99.12/projects:/office/my_projects/ptxdist

Leave the menu and store the configuration. PTXdist is now ready for use.

1.3 Toolchains

Before we can start building our first userland we need a cross toolchain. On Linux, toolchains are nomonolithic
beasts. Most parts of whatwe need to cross compile code for the embedded target comes from theGNUCompiler
Collection, gcc. The gcc packet includes the compiler frontend, gcc, plus several backend tools (cc1, g++, ld etc.)
which actually perform the different stages of the compile process. gcc does not contain the assembler, so we
also need the GNU Binutils packagewhich provides lowlevel stuff.

Cross compilers and tools are usually named like the corresponding host tool, but with a prefix – the GNU target.
For example, the cross compilers for ARM and powerpc may look like

• arm-softfloat-linux-gnu-gcc
• powerpc-unknown-linux-gnu-gcc

With these compiler frontends we can convert e.g. a C program into binary code for specific machines. So for
example if a C program is to be compiled natively, it works like this:

~# gcc test.c -o test

To build the same binary for the ARM architecture we have to use the cross compiler instead of the native one:

~# arm-softfloat-linux-gnu-gcc test.c -o test

Also part of what we consider to be the ”toolchain” is the runtime library (libc, dynamic linker). All programs
running on the embedded system are linked against the libc, which also offers the interface from user space
functions to the kernel.

The compiler and libc are very tightly coupled components: the second stage compiler, which is used to build
normal user space code, is being built against the libc itself. For example, if the target does not contain a hardware
floating point unit, but the toolchain generates floating point code, it will fail. This is also the case when the
toolchain builds code for i686 CPUs, whereas the target is i586.

So in order to make things working consistently it is necessary that the runtime libc is identical with the libc the
compiler was built against.

PTXdist doesn’t contain a pre-built binary toolchain. Remember that it’s not a distribution but a development
tool. But it can be used to build a toolchain for our target. Building the toolchain usually has only to be done
once. It may be a good idea to do that over night, because it may take several hours, depending on the target
architecture and development host power.

9

1 Getting a working Environment

1.3.1 Using Existing Toolchains

If a toolchain is already installed which is known to be working, the toolchain building step with PTXdist may be
omitted.

The OSELAS.BoardSupport() Packages shipped for PTXdist have been tested with the OSE-
LAS.Toolchains() built with the same PTXdist version. So if an external toolchain is being used
which isn’t known to be stable, a target may fail. Note that not all compiler versions and combi-
nations work properly in a cross environment.

Every OSELAS.BoardSupport() Package checks for its OSELAS.Toolchain it’s tested against, so using a different
toolchain vendor requires an additional step:

Open the OSELAS.BoardSupport() Package menu with:

~# ptxdist platformconfig

and navigate to architecture --> toolchain and check for specific toolchain vendor. Clear
this entry to disable the toolchain vendor check.

1.3.2 Building a Toolchain

PTXdist handles toolchain building as a simple project, like all other projects, too. So we can download the
OSELAS.Toolchain bundle and build the required toolchain for the OSELAS.BoardSupport() Package.

A PTXdist project generally allows to build into some project defined directory; all OSELAS.Toolchain projects
that come with PTXdist are configured to use the standard installation paths mentioned below.

All OSELAS.Toolchain projects install their result into /opt/OSELAS.Toolchain-1.99.3/.

Usually the /opt directory is not world writeable. So in order to build our OSELAS.Toolchain
into that directory we need to use a root account to change the permissions. PTXdist detects
this case and asks if we want to run sudo to do the job for us. Alternatively we can enter:
mkdir /opt/OSELAS.Toolchain-1.99.3
chown <username> /opt/OSELAS.Toolchain-1.99.3
chmod a+rwx /opt/OSELAS.Toolchain-1.99.3.

We recommend to keep this installation path as PTXdist expects the toolchains at /opt. Whenever we go to se-
lect a platform in a project, PTXdist tries to find the right toolchain fromdata read from the platform configuration
settings and a toolchain at /opt that matches to these settings. But that’s for our convenience only. If we decide
to install the toolchains at a different location, we still can use the toolchain parameter to define the toolchain to
be used on a per project base.

1.3.3 Building the OSELAS.Toolchain for OSELAS.BSP-Phytec-phyCORE-12

To compile and install an OSELAS.Toolchain we have to extract the OSELAS.Toolchain archive, change into the
new folder, configure the compiler in question and start the build.

The required compiler to build the OSELAS.BSP-Phytec-phyCORE-12 board support package is

10

1 Getting a working Environment

arm-iwmmx-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized

So the steps to build this toolchain are:

~# tar xf OSELAS.Toolchain-1.99.3.2.tar.bz2
~# cd OSELAS.Toolchain-1.99.3.2
~/OSELAS.Toolchain-1.99.3.2# ptxdist select ptxconfigs/\

�

�

�

�
Enter

> arm-iwmmx-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.18_kernel-2.6.27-sanitized.ptxconfig
~/OSELAS.Toolchain-1.99.3.2# ptxdist go

At this stage we have to go to our boss and tell him that it’s probably time to go home for the day. Even on
reasonably fast machines the time to build an OSELAS.Toolchain is something like around 30 minutes up to a
few hours.

Measured times on different machines:

• Single Pentium 2.5 GHz, 2 GiB RAM: about 2 hours

• Turion ML-34, 2 GiB RAM: about 1 hour 30 minutes

• Dual Athlon 2.1 GHz, 2 GiB RAM: about 1 hour 20 minutes

• Dual Quad-Core-Pentium 1.8 GHz, 8 GiB RAM: about 25 minutes

Another possibility is to read the next chapters of this manual, to find out how to start a new project.

When the OSELAS.Toolchain project build is finished, PTXdist is ready for prime time and we can continue with
our first project.

1.3.4 Protecting the Toolchain

All toolchain components are built with regular user permissions. In order to avoid accidential changes in the
toolchain, the files should be set to read-only permissions after the installation has finished successfully. It is also
possible to set the file ownership to root. This is an important step for reliability, so it is highly recommended.

Building Additional Toolchains

The OSELAS.Toolchain-1.99.3.2 bundle comes with various predefined toolchains. Refer the ptxconfigs/
folder for other definitions. To build additional toolchains we only have to clean our current toolchain project,
removing the current selected_ptxconfig link and creating a new one.

~/OSELAS.Toolchain-1.99.3.2# ptxdist clean
~/OSELAS.Toolchain-1.99.3.2# rm selected_ptxconfig
~/OSELAS.Toolchain-1.99.3.2# ptxdist select \

�

�

�

�
Enter

> ptxconfigs/any_other_toolchain_def.ptxconfig
~/OSELAS.Toolchain-1.99.3.2# ptxdist go

All toolchains will be installed side by side architecture dependent into directory

/opt/OSELAS.Toolchain-1.99.3/architecture_part.

Different toolchains for the same architecture will be installed side by side version dependent into directory

/opt/OSELAS.Toolchain-1.99.3/architecture_part/version_part.

11

2 Building phyCORE-PXA270’s root filesystem

2.1 Extracting the Board Support Package

In order to work with a PTXdist based project we have to extract the archive first.

~# tar -zxf OSELAS.BSP-Phytec-phyCORE-12.tar.gz
~# cd OSELAS.BSP-Phytec-phyCORE-12

PTXdist is project centric, so now after changing into the new directory we have access to all valid components.

~/OSELAS.BSP-Phytec-phyCORE-12# ls -l

total 44
-rw-r--r-- 1 jb users 4078 Dec 3 18:10 ChangeLog
-rw-r--r-- 1 jb users 1313 Nov 1 13:31 Kconfig
-rw-r--r-- 1 jb users 1101 Nov 4 21:05 TODO
drwxr-xr-x 10 jb users 4096 Jan 14 17:33 configs/
drwxr-xr-x 3 jb users 4096 Jan 14 15:08 documentation/
drwxr-xr-x 5 jb users 4096 Nov 13 12:30 local_src/
drwxr-xr-x 5 jb users 4096 Dec 15 10:19 patches/
drwxr-xr-x 6 jb users 4096 Jun 8 2008 projectroot/
drwxr-xr-x 3 jb users 4096 Nov 1 14:18 protocols/
drwxr-xr-x 4 jb users 4096 Jan 8 16:28 rules/
drwxr-xr-x 3 jb users 4096 Jan 7 08:55 tests/

Notes about some of the files and directories listed above:

ChangeLog Here you can read what has changed in this release. Note: This file does not always exist.

documentation If this BSP is one of our OSELAS BSPs, this directory contains the Quickstart you are currenly
reading in.

configs Amultiplatform BSP contains configurations for more than one target. This directory contains the plat-
form configuration files.

projectroot Contains files and configuration for the target’s runtime. A running GNU/Linux system uses many
text files for runtime configuration. Most of the time the generic files from the PTXdist installation will fit
the needs. But if not, customized files are located in this directory.

rules If something special is required to build the BSP for the target it is intended for, then this directory contains
these additional rules.

patches If some special patches are required to build the BSP for this target, then this directory contains these
patches on a per package basis.

tests Contains test scripts for automated target setup.

12

2 Building phyCORE-PXA270’s root filesystem

2.2 Selecting a Software Platform

First of all we have to select a software platform for the userland configuration. This step defines what kind of ap-
plicationswill be built for the hardware platform. TheOSELAS.BSP-Phytec-phyCORE-12 comeswith a predefined
configuration we select in the following step:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist select \
�

�

�

�
Enter

> configs/ptxconfig
info: selected ptxconfig:

'configs/ptxconfig'

2.3 Selecting a Hardware Platform

Before we can build this BSP, we need to select one of the possible targets to build for. In this case we want to
build for the phyCORE-PXA270:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist platform \
�

�

�

�
Enter

> configs/phyCORE-PXA270-1.99.12-1/platformconfig.pcm990
info: selected platformconfig:

'configs/phyCORE-PXA270-1.99.12-1/platformconfig.pcm990'

Note: If you have installed the OSELAS.Toolchain() at its default location, PTXdist should already have detected
the proper toolchain while selecting the platform. In this case it will output:

found and using toolchain:
'/opt/OSELAS.Toolchain-1.99.3/arm-iwmmx-linux-gnueabi/

gcc-4.3.2-glibc-2.8-binutils-2.18-kernel-2.6.27-sanitized/bin'

If it fails you can continue to select the toolchain manually as mentioned in the next section. If this autodetection
was successful, we can omit the steps of the section and continue to build the BSP.

2.4 Selecting a Toolchain

If not automatically detected, the last step in selecting various configurations is to select the toolchain to be used
to build everything for the target.

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist toolchain \
�

�

�

�
Enter

> /opt/OSELAS.Toolchain-1.99.3/arm-iwmmx-linux-gnueabi/\
�

�

�

�
Enter

> gcc-4.3.2-glibc-2.8-binutils-2.18-kernel-2.6.27-sanitized/bin

13

2 Building phyCORE-PXA270’s root filesystem

2.5 Building the Root Filesystem

Now everything is prepared for PTXdist to compile the BSP. Starting the engines is simply done with:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist go

PTXdist does now automatically find out from the selected_ptxconfig and selected_platformconfig
files which packages belong to the project and starts compiling their targetinstall stages (that one that actually
puts the compiled binaries into the root filesystem). While doing this, PTXdist finds out about all the dependen-
cies between the packets and brings them into the correct order.

While the command ptxdist go is running we can watch it building all the different stages
of a packet. In the end the final root filesystem for the target board can be found in the
platform-phyCORE-PXA270.PCM990/root/ directory and a bunch of *.ipk packets in the
platform-phyCORE-PXA270.PCM990/packages/ directory, containing the single applications the root
filesystem consists of.

2.6 Building an Image

After we have built a root filesystem, we canmake an image, which can be flashed to the target device. To do this
call

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist images

PTXdist will then extract the content of priorly created *.ipk packages to a temporary directory and generate an
image out of it. PTXdist supports following image types:

• hd.img: contains grub bootloader, kernel and root files in a ext2 partition. Mostly used for X86 target
systems.

• root.jffs2: root files inside a jffs2 filesystem.

• uRamdisk: a u-boot loadable Ramdisk

• initrd.gz: a traditional initrd RAM disk to be used as initrdramfs by the kernel

• root.ext2: root files inside a ext2 filesystem.

• root.squashfs: root files inside a squashfs filesystem.

• root.tgz: root files inside a plain gzip compressed tar ball.

The to be generated Image types and addtional options can be defined with

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist platformconfig

Then select the submenu "image creation options". The generated image will be placed into
platform-phyCORE-PXA270.PCM990/images/.

Only the content of the *.ipk packages will be used to generate the image. This means that
files which are put manually into the platform-phyCORE-PXA270.PCM990/root/ will not
be enclosed in the image. If custom files are needed for the target. Install it with ptxdist.

Now that there is a root filesystem in our workspace we’ll have to make it visible to the phyCORE-PXA270. There
are two possibilities to do this:

14

2 Building phyCORE-PXA270’s root filesystem

1. Making the root filesystem persistent in the onboard media.

2. Booting from the development host, via network.

Figure 2.1: Booting the root filesystem, built with PTXdist, from the host via network and from flash.

Figure 2.1 shows both methods. The main method used in the OSELAS.BSP-Phytec-phyCORE-12 BSP is to pro-
vide all needed components to run on the target itself. The Linux kernel and the root filesystem is persistent in
the media the target features. This means the only connection needed is the nullmodem cable to see what is
happening on our target. We call this method standalone.

The other method is to provide all needed components via network. In this case the development host is con-
nected to the phyCORE-PXA270with a serial nullmodem cable and via ethernet; the embedded board boots into
the bootloader, then issues a TFTP request on the network and boots the kernel from the TFTP server on the
host. Then, after decompressing the kernel into the RAM and starting it, the kernel mounts its root filesystem
via NFS (Network File System) from the original location of the platform-phyCORE-PXA270.PCM990/root/
directory in our PTXdist workspace.

The OSELAS.BSP-Phytec-phyCORE-12 provides both methods. The latter one is especially for development pur-
poses, as it provides a very quick turnaround while testing the kernel and the root filesystem.

This chapter describes how to set up our target with features supported by PTXdist to simplify this challange.

2.7 Target Side Preparation

The phyCORE-PXA270 uses U-Boot as its bootloader. U-Boot can be customizedwith environment variables and
scripts to support any boot constellation. OSELAS.BSP-Phytec-phyCORE-12 comes with a predefined environ-
ment setup to easily bring up the phyCORE-PXA270.

Usually the environment doesn’t have to be set manually on our target. PTXdist comes with an automated setup
procedure to achieve a correct environment on the target.

Due to the fact that some of the values of these U-Boot environment variables must meet our local network envi-
ronment and development host settingswe have to define themprior to running the automated setup procedure.

Note: At this point of time itmakes sense to check if the serial connection is alreadyworking, because it is essential
for any further step we will do.

15

2 Building phyCORE-PXA270’s root filesystem

We can try to connect to the target with our favorite terminal application (minicom or kermit for example).
With a powered target we identify the correct physical serial port and ensure that the communication is working.
Make sure to leave this terminal application to unlock the serial port prior to the next steps.

To set up development host and target specific value settings, we run the command

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist boardsetup

We navigate to ”Network Configuration” and replace the default settings with our local network settings. In
the next step we also should check if the ”Host’s Serial Configuration” entries meet our local development host
settings. Especially the ”serial port” must correspond to our real physical connection.

When everything is set up, we can ”Exit” the dialog and and save our new settings.

Now the command

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist test setenv

will automatically set up a correct default environment on our phyCORE-PXA270. We have to powercycle our
target to make this step happen.
It should output lines like these when it was successful:

===============================
Please power on your board now!
===============================

Logging into U-Boot.....................OK
Setting new environment.................OK
Test finished successfully.

Note: If it fails, reading platform-phyCORE-PXA270.PCM990/test.logwill give further information about
why it has failed. Also extending the command line shown above by a --debug can help to see whats going
wrong.

Users reported this step could fail if the Linux system running PTXdistis a virtual machine as
guest in an operating system from Redmont. In this case it seems at least one of the two OSes is
eating up characters sent to the serial line. Pengutronix recommends running PTXdiston a real
Linux system.

2.8 Stand-Alone Booting Linux

To use the the target standalone, the rootfs has to be made persistent in one of the onboard suported media of
the phyCORE-PXA270. The following sections describe the steps necessary to bring the rootfs into the onboard
NOR type flash.

Only for preparation we need a network connection to the embedded board and a network aware bootloader
which can fetch any data from a TFTP server.

After preparation is done, the phyCORE-PXA270 can work independently from the development host. We can
”cut” the network (and serial cable) and the phyCORE-PXA270 will continue to work.

16

2 Building phyCORE-PXA270’s root filesystem

2.8.1 Development Host Preparations

On the development host a TFTP server has to be installed and configured. The exact method to do so is distri-
bution specific; as the TFTP server is usually started by one of the inetd servers, the manual sections describing
inetd or xinetd should be consulted.

Usually TFTP servers are using the /tftpboot directory to fetch files from, so if we want to push kernel images
into this directory we have to make sure we are able to write there. As the access permissions are normally
configured in a way to let only user root write to /tftpboot we have to change it. The boardsetup scripts
coming with this BSP expect write permission in TFTP directory!

We can run a simple:

~# touch /tftpboot/my_file

to test if we have permissions to create files in this directory. If it fails we have to ask the administrator to grant
these permissions.

Note: We must /tftpboot part of the command above with our local settings.

2.8.2 Preparations on the Embedded Board

To boot phyCORE-PXA270 stand-alone, anything needed to run a Linux system must be locally accessible. So at
this point of time we must replace any current content in phyCORE-PXA270’s flash memory.

But first we must create the new root filesystem image prepared for its usage on the phyCORE-PXA270:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist images

To simplify this step, OSELAS.BSP-Phytec-phyCORE-12 comes with an automated setup procedure for this step.
To use this procedure we run the command:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist test flash

Note: This command requires a serial and a network connection. The network connection can be cut after this
step.

This command will automatically write a root filesystem to the correct flash partition on the phyCORE-PXA270.
It only works if we previously have set up the environment variables successfully (described at page 15).
The command should output lines like this when it was successful:

===============================
Please power on your board now!
===============================

Logging into U-Boot.....................OK
Flashing kernel.........................OK
Flashing rootfs.........................OK
Flashing oftree.........................OK
Test finished successfully.

Note: If it fails, reading platform-phyCORE-PXA270.PCM990/test.logwill give further information about
why it has failed.

17

2 Building phyCORE-PXA270’s root filesystem

2.8.3 Booting the Embedded Board

To check that everything went successfully up to here, we can run the boot test.

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist test boot

===============================
Please power on your board now!
===============================

Checking for U-Boot.....................OK
Checking for Kernel.....................OK
Checking for init.......................OK
Checking for login......................OK
Test finished successfully.

This will check if the environment settings and flash partitioning are working as expected, so the target comes up
in stand-alone mode up to the login prompt.

Note: If it fails, reading platform-phyCORE-PXA270.PCM990/test.logwill give further information about
why it has failed.

After the next reset or powercycle of the board, it should boot the kernel from the flash, start it and mount the
root filesystem also from flash.

Note: The default login account is rootwith an empty password.

2.9 Remote-Booting Linux

The next method wewant to try after building a root filesystem is the network-remote boot variant. This method
is especially intended for development as everything related to the root filesystem happens on the host only.
It’s the fastest way in a phase of a project, where things are changing frequently. Any change made in the local
platform-phyCORE-PXA270.PCM990/root/ directory simply ”appears” on the embedded device immedi-
ately.

All we need is a network interface on the embedded board and a network aware bootloader which can fetch the
kernel from a TFTP server.

2.9.1 Development Host Preparations

If we already have booted the phyCORE-PXA270 locally (as described in the previous section), all of the develop-
ment host preparations are done.

If not, then a TFTP server has to be installed and configured on the development host. The exactmethod of doing
this is distribution specific; as the TFTP server is usually started by one of the inetd servers, themanual sections
describing inetd or xinetd should be consulted.

Usually TFTP servers are using the /tftpboot directory to fetch files from, so if wewant to push data files to this
directory, we have to make sure we are able to write there. As the access permissions are normally configured in
a way to let only user root write to /tftpboot we have to change it. If we don’t want to change the permission
or if its disallowed to change anything, the sudo command may help.

18

2 Building phyCORE-PXA270’s root filesystem

~/OSELAS.BSP-Phytec-phyCORE-12# sudo cp platform-phyCORE-PXA270.PCM990/images/linuximage
/tftpboot/uImage-pcm027

The NFS server is not restricted to a certain filesystem location, so all we have to do on most distributions is to
modify the file /etc/exports and export our root filesystem to the embedded network. In this example file the
whole work directory is exported, and the ”lab network” between the development host is 192.168.23.0, so the
IP addresses have to be adapted to the local needs:

/home/<user>/work 192.168.23.0/255.255.255.0(rw,no_root_squash,sync)

Note: Replace <user>with your home directory name.

2.9.2 Preparations on the Embedded Board

We already provided the phyCORE-PXA270 with the default environment at page 15. So there is no additional
preparation required here.

2.9.3 Booting the Embedded Board

The default environment settings coming with the OSELAS.BSP-Phytec-phyCORE-12 has the possibility to boot
from the internal flash or from the network. The definition what should happen after power on is made with the
environment variable boot_cmd. The default setting is run bcmd_flash and will boot from flash.

To change this behavior we have to change the value of the boot_cmd environment variable to run bcmd_net.

uboot> setenv boot_cmd 'run bcmd_net'
uboot> saveenv

The next time the target will start it will use the network based booting mechanism.

19

3 Accessing Peripherals

The following sections provide an overview of the supported hardware components and their corresponding
operating system drivers. Further changes can be ported on demand of the customer.

Phytec’s phyCORE-PXA270 starter kit consists of the following individual boards:

1. The phyCORE-PXA270 module itself (PCM-027), containing the PXA270, RAM, flash, the GPIO expander
chip and several other peripherals.

2. The starter kit baseboard (PCM990).

3. A GPIO breakout board (PCM-989).

To achieve maximum software re-use, the Linux kernel offers a sophisticated infrastructure, layering software
components into board specific parts. The OSELAS.BSP() tries to modularize the kit features as far as possible;
that means that when a customized baseboards or even customer specific module is developed, most of the
software support can be re-used without error prone copy-and-paste. So the kernel code corresponding to the
boards above can be found in

1. arch/arm/mach-pxa/pcm027.c for the CPU module

2. arch/arm/mach-pxa/pcm969_990-baseboard.c for the baseboard. With this file two common
baseboards PCM969 and PCM990 are supported. The kernel commandline parameter can be used to
select the board type during boot period. board=pcm990 turns on board specific support for PCM990.
The correct kernel command line should be set up in the u-boot environment. So mostly you don’t have
to change this.

In fact, software re-use is one of the most important features of the Linux kernel and especially of the ARM port,
which always had to fight with an insane number of possibilities of the System-on-Chip CPUs.

Note that the huge variety of possibilities offered by the phyCORE modules makes it difficult
to have a completely generic implementation on the operating system side. Nevertheless, the
OSELAS.BSP() can easily be adapted to customer specific variants. In case of interest, contact
the Pengutronix support (support@pengutronix.de) and ask for a dedicated offer.

The following sections provide an overview of the supported hardware components and their operating system
drivers.

3.1 NOR Flash

Linux offers the Memory Technology Devices Interface (MTD) to access low level flash chips, directly connected
to a SoC CPU.

Modern kernels offer a method to define flash partitions on the kernel command line, using the mtdparts com-
mand line argument:

20

3 Accessing Peripherals

mtdparts=physmap-flash.0:256k(u-boot)ro,4096k(system),-(root)

This line, for example, specifies several partitions with their size and name which can be used as /dev/mtd0,
/dev/mtd1 etc. from Linux. Additionally, this argument is also understood by reasonably new U-Boot boot-
loaders, so if there is any need to change the partitioning layout, the U-Boot environment is the only place where
the layout has to be changed.

From userspace the NOR flash partitions can be accessed as

• /dev/mtdblock0 (e.g. U-Boot partition)

• /dev/mtdblock1 (e.g. U-Boot environment partition)

• /dev/mtdblock2 (e.g. Kernel partition)

• /dev/mtdblock3 (e.g. Linux rootfs partition)

Note: This is an example only. The partitioning on our phyCORE-PXA270 target can differ from this layout.

Only the/dev/mtdblock3on thephyCORE-PXA270has a filesystem, so theother partitions cannot bemounted
into the rootfs. The only way to access them is by pushing a prepared flash image into the corresponding
/dev/mtd device node.

3.2 PWMUnits

The PXA270 has four PWMunits which can be programmed individually. However, as the phyCORE-PXA270 has
some hardware restrictions, not all of them can be used under all circumstances:

• PWM#0 is used for LCD Backlight brightness (see section ??)

• PWM#1 is used to controll the motor speed on the GPIO expander board

• PWM#2 is not available

• PWM#3 is not available

The PWM units can be controlled with sysfs entries, with which we can aquire a PWM unit, setup the pe-
riod and output. Due to optimisation issue the four PWM Units are registerd to two platformdevices, each
of which represents two PWM units. You can find the sysfs directories for the platform devices under
/sys/bus/platform/devices/pxa27x-pwm.0 and /sys/bus/platform/devices/pxa27x-pwm.1 ,
while the first one represents PWM#0 and PWM#2, the second one PWM#1 and PWM#3. The entries we can
use to control the PWM units are located under the correpsonding platform device directories. For each PWM
unit there are five entries:

• .../acquire
Before we can control a PWMunit, wemust first acquire it to make sure that it is not used already by some
one else. Just write the PWM unit number we want to acquire into this entrie. Note that we can only ac-
quire a PWM unit the platform device actually represents. e.g. you can acquire PWM#0 and PWM#2 with
/sys/bus/platform/devices/pxa27x-pwm.0?/acquire . If we wish to control PWM#3, you’d
have to use the acauire entry in /sys/bus/platform/devices/pxa27x-pwm.1. Once we have ac-
quired a PWM unit, we can use the entries listed below to control it.

• .../release
Write a non-zero value into this entrie to release our currently acquired PWM unit.

• .../period
This entry can be used to change the period of the PWM signal. The unit of the values being written here
is Nanoseconds. Valid numbers are 100 …10000000 (100 us …10 ms). Default value is 78770.

21

3 Accessing Peripherals

• .../maxlevel
Use this entry to set the maximal level of our PWM output. Default value is 255.

• .../setlevel
Writing a value into this entry will set the pwm output level. The actual output of the PWM unit will be a
percentage of the presetted maximal level.

Note: You can only control a PWM units directly only if it is not acquired by another driver already. As default
all predefined PWM unit listed above are registerd to a corresponding driver. On PCM990 PWM#0 is acquired
and locked by the backlight driver. If you wish to access this element, please use the infrastructures provided
by the individual drivers. Please consult section ??). If you wish to access the PWM unit manually, you have to
unload the driver controlling the uni first before you acquire it through the user interface. We don’t recommend
this though.

3.3 GPIO Events

Some GPIOs are able to issue an interrupt. For example, on the breakout board the following pins offer this
feature:

• GPIO14 is used as Key1 event input

• GPIO86 is used as Key2 event input

• GPIO87 is used as Key3 event input

• GPIO91 is used as light sensor event input

The interrupts generated by the gpios can be registered to the UIO(Userspace IO) Subsystem. As default GPIO91
is registered. The UIO Subsystem creates a device node in devfs for every registered uio device. To enable in-
terrupt collecting write a non-zero value into /dev/uio0. Reading the device /dev/uio0 returns an int value
which is the event count (number of interrupts) seen by the device or a read error if no changes have occured since
last read. If you open the devices in a blocking way, the read operation will block until an interrupt happens. The
file descriptor can be passed to poll().
If you want to register events from other gpios to the uio subsystem. You can edit the board file in kernel.
Look at the file arch/arm/mach-pxa/pcm969_990-baseboard.c in the kernel tree and refer to the struct
pcm990_gpioevent_uio_info.

Note that this interface is a temporary one. The Open Source Automation Development Lab
(OSADL) is working on an ”Industrial I/O” driver framework which will probably superseed this
interface in the future.

3.4 GPIO

Like most modern System-on-Chip CPUs, the PXA270 has numerous GPIO pins. Some of them are unaccessi-
ble for the userspace as Linux drivers use them internally. Others are also used by drivers but are exposed to
userspace via sysfs. Finally, the remaining GPIOs can be requested for custom use by userspace, also via sysfs.

Refer to the in-kernel documentation Documentation/gpio.txt for complete details how to use the sysfs-
interface for manually exporting GPIOs.

22

3 Accessing Peripherals

3.5 LCD Graphics

phyCORE-PXA270’s LCD support uses the standard PXA2XX’s framebuffer support and can be used as a regular
console when also an USB keyboard is attached to the system. fb-tools can be used to manipulate the frame
buffer (colour depth).
There’re two types of LCD supported on the target: NEC nl6448bc20 andSharp lq084v1dg21. The LCD type
must be selected with kernel command line during boot time. lcd=lq084v1dg21 e.g. declares that the Sharp
LCD is to be used. The default selection is Sharp lq084v1dg21. If we have any issues with our display, we can
try to switch to lcd=nl6448bc20. Changeing the content of the variable bargs_base in u-boot Environment
to do this (refer section ??).

For display definitions (resolution and frequency) see source file

arch/arm/mach-pxa/pcm969_990-baseboard.c

in the kernel tree.

The LCD’s backlight can be controlled by using the backlight class driver. This driver offers a sysfs entry to control
the brightness and a connection to the frame buffer console and to the X-server for power management.

We can find the sysfs entries in /sys/class/backlight/pwm-backlight and control themwith plain ASCII
numbers.

• max_brightness
To read back themaximumvalue (hardware dependend). This value feeded into the brightness entry gives
the maximum backlight brightness.

• brightness
Set the current brightness value (0 …max_brightness).

• bl_power
Set or read back backlight power. 0 means backlight is off, 1 means on.

• actual_brightness
To read back the current brightness setting. Its the same as brightness.

On the development board, J23must be in position 1-2 tomake the PWM#0 control the inverter.
See chapter ”LCD interface” in the phyCORE-PXA270 manual for further details.

3.6 SPI Master

The phyCORE-PXA270 board supports an SPI bus, based on the PXA270’s integrated SPI controller. It is con-
nected to the onboard devices using the standard kernel method, so all methods described here are not special
to the phyCORE-PXA270.

Connecteddevice canbe found in the sysfs at thepath/sys/bus/spi/devices. It dependson the correspond-
ing SPI slave device driver if it provides access to the SPI salve device through this way (sysfs), or any different
kind of API.

On the phyCORE-PXA270, channel 1 of the SPI controller is connected to the MAX7301 GPIO expander chip. The
BSP currently uses the ”Chip Select” alternate functionofGPIO24 to select theMAX7301; Thismean the controller

23

3 Accessing Peripherals

handles chip selection by its own in hardware. This SPI controller mode works fine if only one SPI slave device is
connected (in the case of phyCORE-PXA270 it is the MAX7301).
If its planned in a customedesign to addmoredevices to this SPI channel 1 (to let it act like abus) any chip selection
has to be done in software. In this case also for the MAX7301, so GPIO 24 must be a regular GPIO without any
alternate function enabled.

For a description of the SPI framework see Documentation/spi/spi-summary and for PXA2xx’s SPI driver
see Documentation/spi/pxa2xx

3.7 GPIO Expander MAX7301

This MAX7301 is a SPI bus based GPIO expander supporting 28 additional EGPIOs.
We can find the general information of the gpio expander chip in /sys/class/gpio/gpiochip228/.
To control the direction and level of each EGPIO we have to use the gpiolib sysfs entries as described in section
3.4.
Note: The GPIO base number of MAX7301 expander is 228. So we have to remember to add 228 to the single
GPIOnumber on the expanderwhenwewant to control it. E.g. GPIO2on theMAX7301 expanderwill beGPIO230
on the system.

3.8 MMC/SD Card

The phyCORE-PXA270 supports Secure Digital Cards andMulti Media Cards in conjunction with its PCM990 to be
used as general purpose blockdevices. These devices can be used in the same way as any other blockdevice.

These kind of devices are hot pluggable, so you must pay attention not to unplugg the device
while its still mounted. This may result in data loss.

After inserting an MMC/SD card, the kernel will generate new device nodes in dev/. The full device can be
reached via its /dev/mmcblk0 device node, MMC/SD card partitions will occure in the following way:

/dev/mmcblk0pY

Y counts as the partition number starting from 1 to the max count of partitions on this device.

Note: These partition device nodes will only occure if the card contains a valid partition table (”harddisk” like
handling). If it does not contain one, the whole device can be used for a filesystem (”floppy” like handling). In
this case /dev/mmcblk0must be used for formatting and mounting.

The partitions can be formatted with any kind of filesystem and also handled in a standard manner, e.g. the
mount and umount command work as expected.

3.9 AC97 Based Audio

The sound features can be used through standard PXA2xx AC97 ALSA support for the onboardWolfsonWM9712
device. See sources in sound/arm/pxa2xx.c in the kernel source tree for further information.

24

3 Accessing Peripherals

3.9.1 Sound Output

To play a sound, copy our favorite mp3 file to the phyCORE-PXA270, pop up the volume and play the file.

~# amixer sset PCM,0 20,20 unmute
~# amixer sset Headphone,0 20,20 unmute
~# amixer sset Master,0 20,20 unmute # control the speaker
~# amixer sset 'Master Left Inv',0 on # activate the speaker by phase reversal
~# madplay <mp3file_name>

If external loudspeakers are connected it is possible to mute the built-in speaker with amixer sset 'Master
Left Inv',0 off.

Note: We also can use the command ”alsamixer” to handle mixer’s settings.

3.9.2 Sound Record

Note: When the Wolfson WM9712 chip comes up after power on, every sound source is muted as default. To
record any sound the desired audio source must be unmuted first.

To activate sound capturing the internal ADCs have to be powered up and unmuted first:

~# amixer sset ADC,0 on
~# amixer sset Capture 15,15 unmute

Now its time to select the desired audio source for capturing. The following commands select the stereo line in
as the source:

~# amixer sset Line 30,30 unmute
~# amixer sset 'Capture Select',0 Line

To select the microphone instead of the stereo line in, these commands are required:

~# amixer sset 'Mic 1',0 30
~# amixer sset Capture Select,0 'Mic 1'

Maybe the recorded sound level will be very low. To improve the volume we can enable a 20dB boost with the
following command:

~# amixer sset 'Capture 20dB Boost',0 on

To record any sound the command arecord is the recommended way to do it. This example records about 20
seconds from the desired source:

~# arecord -f dat -d 20 -D hw:0,0 test.wav

See arecord’s manual for further meaning of the command line parameters.

25

3 Accessing Peripherals

3.9.3 Advanced Sound Handling

Note: The Wolfson WM9712 is a complex beast with many features. Sometimes it’s hard to understand why it
works or why it fails. Armed with its datasheet, the AC’97 specification and the kernel’s powerful AC97 debug
feature it is much easier to use WM9712 features in the manner we like or the way the chip supports it. Not all
WM9712 features are supported by the ALSA utils out of the box. Some of these features need kernel driver
patches to make the ALSA utils aware of it.

To see the current WM9712 register settings simply enter:

~# cat /proc/asound/card0/codec97#0/ac97#0-0+regs

This is an easy way to check the results of the amixer command and if it supports this feature out of the box.

To change any register’s value manually (without amixer command for test purposes only) simply enter:

~# echo "1a 0404" > /proc/asound/card0/codec97#0/ac97#0-0+regs

This example updates WM9712’s register 0x1A to the new value 0x0404. You will also need the datasheet here
to know the registers, their offset and meaning.
Note: Give all values in hex but without leading 0x.

3.10 AC97 Based Touchscreen

This device is supported through PXA2xx’s standard AC97 support for the onboard Wolfson WM9712 device
driver for touchscreen. In userspace this device is supported through the tslib, so it can be used by an X server as
a pointing device. See sources in
driver/input/touchscreen/wm97xx.c
in the kernel source tree for further information.

Modul parameters to control the driver:

• cont_rate Sample rate in continuous mode (Hz).
Default is 200 samples per second.

• pen_int Pen down detection (1 = interrupt, 0 = polling).
This driver can either poll or use an interrupt to indicate a pen down event. If the IRQ request fails, then it
will fall back to polling mode. Default is interrupt.

• pressure Pressure readback (1 = pressure, 0 = no pressure).

• ac97_touch_slot Touch screen data slot AC97 number.
enable/disable AUX ADC sysfs, default is enabled

• aux_sys disable AUX ADC sysfs entries.

• status_sys disable codec status sysfs entries.
enable/disable codec status sysfs, default is enabled

• These parameters are used to help the input layer discard out of range readings and reduce jitter etc.

– min, max: indicate the min and max values our touch screen returns

– fuzz: use a higher number to reduce jitter

The default values correspond to Mainstone II in QVGAmode Please read
Documentation/input/input-programming.txt for more details.

26

3 Accessing Peripherals

– abs_x Touchscreen absolute X min, max, fuzz.

– abs_y Touchscreen absolute Y min, max, fuzz.

– abs_p Touchscreen absolute Pressure min, max, fuzz.

• rpu Set internal pull up resistor for pen detect.
Pull up is in the range 1.02k (least sensitive) to 64k (most sensitive) i.e. pull up resistance = 64k Ohms /
rpu.
We adjust this value if we are having problems with pen detect not detecting any down event.

• pil Set current used for pressure measurement.
Set

– pil = 2 to use 400µA

– pil = 1 to use 200µA and

– pil = 0 to disable pressure measurement.

This is used to increase the range of values returned by the ADC when measuring touchpanel pressure.

• pressure Set threshold for pressure measurement.
Pen down pressure below threshold is ignored.

• delay Set ADC sample delay.
For accurate touchpanel measurements, some settling time may be required between the switch matrix
applying a voltage across the touchpanel plate and the ADC sampling the signal.
This delay can be set by setting delay = n. Valid values of n can be looked up in the ’delay_table’ in the
driver source. Long delays >1ms are supported for completeness, but are not recommended.

• five_wire Set to ’1’ to use 5-wire touchscreen.
NOTE: Five wire mode does not allow for readback of pressure.

• mask Set ADC mask function.
Sources of glitch noise, such as signals driving an LCD display, may feed through to the touch screen plates
and affect measurement accuracy. In order to minimise this, a signal may be applied to the MASK pin to
delay or synchronise the sampling.

– 0 = No delay or sync

– 1 = High on pin stops conversions

– 2 = Edge triggered, edge on pin delays conversion by delay param (above)

– 3 = Edge triggered, edge on pin starts conversion after delay param

Using the touchscreen requires a calibration. This has to be done the first time a newly built OSELAS.BSP-Phytec-
phyCORE-12 runs on the target to create the calibration information before we can use the X server.

To do so run the command:

~# ts_calibrate

The command uses the environment variable TSLIB_TSDEVICE (defined in /etc/profile) and the so called ts-lib,
configured in /etc/ts.conf.

Note: When we intend to calibrate the touchpanel, stop an already running X server prior to starting
ts_calibrate. They can’t share the framebuffer, so the X server gets killed and the ts_calibrate command
might hang forever.

27

3 Accessing Peripherals

3.11 USB Host Controller Unit

The phyCORE-PXA270 supports a standard OHCI Rev. 1.0a compliant host controller onboard for low and full
speed connections. Up to two ports are supported by this CPU.

Only channel 1 is supported, channel 2 and 3 are not available.

Make sure the required USB device module for the device to be attached is already loaded. The OSELAS.BSP-
Phytec-phyCORE-12 supports USB mice and USB Mass Storage devices (MemorySticks aso.) as default.

3.12 Network

The phyCORE-PXA270 module has an SMSC 91C111 ethernet chip onboard, which is being used to provide the
eth0 network interface. The interface offers a standard Linux network port which can be programmed using the
BSD socket interface.

3.13 I²C Master

The PXA270 processor based phyCORE-PXA270 supports a dedicated I²C controller onchip. The kernel supports
this controller as a master controller.

Additional I²Cdevicedrivers canuse the standard I²CdeviceAPI to gain access to their devices through thismaster
controller. For further information about the I²C framework seeDocumentation/i2c in the kernel source tree.

3.13.1 I²C Realtime Clock RTC8564

Due to the Real Time Clock framework of the kernel the RTC8564 clock chip can be accessed using the same tools
as for any other real time clock.

Date and time can be manipulated with the hwclock tool, using the -w (systohc) and -s (hctosys) options. For
more information about this tool refer to the manpage of hwclock.

OSELAS.BSP-Phytec-phyCORE-12 tries to set up the date at system startup. If there was a powerfail hwclockwill
state:

pcf8564 1-0051: low voltage detected, date/time is not reliable.
pcf8564 1-0051: retrieved date/time is not valid.

In this case set the date manually (see man date) and run hwclock -w -u to store the new date into the
RTC8564.

3.13.2 I²C Device 24W32

This device is a 4 kiB non-volatile memory for general purpose usage.

This type of memory is accessible through the sysfs filesystem. To read the EEPROM content simply open() the
entry /sys/bus/i2c/devices/1-0052/eeprom and use fseek() and read() to get the values.

28

3 Accessing Peripherals

3.14 Status LEDs

These LEDs are supported to display CPU activity and heart beat. They occupy the two processor GPIOs 90 and
91 for this purpose.

Note: These GPIOs are also used with the breakout board. So activity and heart beat function are disabled as
default.

3.15 Socket CAN

The phyCORE-PXA270 has one SJA1000 based CAN controller, which is supported by drivers using the CAN
framework ”Socket-CAN”. Using this framework, CAN interfaces can be programmed with the BSD socket API.

3.15.1 About Socket-CAN

The CAN (Controller Area Network1) bus offers a low-bandwidth, prioritised message fieldbus for communica-
tion between microcontrollers. Unfortunately, CAN was not designed with the ISO/OSI layer model in mind, so
most CAN APIs available throughout the industry don’t support a clean separation between the different logical
protocol layers, like for example known from ethernet.

The Socket-CAN framework for Linux extends the BSD socket API concept towards CAN bus. It consists of

• a core part (candev.ko)

• chip drivers (e. g. mscan, sja1000 etc.)

So in order to start working with CAN interfaces we’ll have to make sure all necessary drivers are loaded.

Starting and Configuring Interfaces from the Command Line

If all drivers are present in the kernel, ”ifconfig -a” shows which network interfaces are available; as Socket-CAN
chip interfaces are normal Linux network devices (with some additional features special to CAN), not only the
ethernet devices can be observed but also CAN ports.

For this example, we are only interested in the first CAN port, so the information for can0 looks like

~# ifconfig can0
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

inet addr:127.42.23.180 Mask:255.255.255.0
UP RUNNING NOARP MTU:16 Metric:1
RX packets:35948 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10000
RX bytes:243744 (238.0 KiB) TX bytes:2 (2.0 B)
Interrupt:145 Base address:0x900

The output contains the usual parameters also shown for ethernet interfaces, so not all of these are necessarily
relevant for CAN (for example the MAC address). These parameters contain useful information:

1ISO 11898/11519

29

3 Accessing Peripherals

Field Description

can0 Interface Name
NOARP CAN cannot use ARP protocol
MTU Maximum Transfer Unit, always 8
RX packets Number of Received Packets
TX packets Number of Transmitted Packets
RX bytes Number of Received Bytes
TX bytes Number of Transmitted Bytes
errors... Bus Error Statistics

Table 3.1: CAN interface information

Inferfaces shown by the ”ifconfig -a” command can be configured with canconfig. This command adds CAN
specific configuration possibilities for network interfaces, similar to for example iwconfig for wireless ethernet
cards.

The baudrate for can0 can now be changed:

~# canconfig can0 bitrate 250000

and the interface is started with

~# ifconfig can0 up

Using the CAN Interfaces from the Command Line

After successfully configuring the local CAN interface and attaching some kind of CAN devices to this physical
bus, we can test this connection with command line tools.

The tools cansend and candump are dedicated to this purpose.

To send a simple CANmessage with ID 0x20 and one data byte of value 0xAA just enter:

~# cansend can0 --identifier=0x20 0xAA

To receive CANmessages run the candump command:

~# candump can0
interface = can0, family = 29, type = 3, proto = 0
<0x020> [1] aa

The output of candump shown in this example was the result of running the cansend example above on a dif-
ferent machine.

See cansend’s and candump’s manual pages for further information about using and options.

30

4 Special Notes

4.1 Analysing the CAN Bus Data Transfer

The OSELAS.BSP-Phytec-phyCORE-12 BSP comes with the standard pcap library and tcpdump tool. Both are
capable of analyzing CAN data transfer wich includes time stamping.

We set up the CAN interface(s) as usual and use it in our application. With tcpdump we can sniff at any point of
time the data transferred on the CAN line.

To do so, we simply start tcpdump:

~# tcpdump -i can0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on can0, link-type LINUX_CAN (Linux CAN), capture size 68 bytes

Whenever there is any traffic on the line, tcpdumpwill log it to stdout. Wewill generate some traffic by using the
cansend command:

~# cansend can0 -i 0x12 0x0f 0xf0 0x10 0x01

For this data, tcpdumpwill output:

00:15:52.482066 CAN Out ID:00000012 PL_LEN:4 PAYLOAD: 0x0f 0xf0 0x10 0x01

The log tcpdump generates consist of six fields:

1. 00:15:52.482066 is the timestamp this data was on the line. Its format is HH:MM:SS:TTTTTT, with
TTTTTT as second’s fraction

2. CAN interface type

3. Outmessage’S data direction on this interface

4. ID:00000012 CANmessage ID

5. PL_LEN:4 byte count of message data

6. PAYLOAD: 0x0f 0xf0 0x10 0x01 the payload data

Some notes:

• The data direction field could be Out or In
• The CANmessage ID encodes some additional info into higher bit values:

– Bit 31 encodes an extended frame. If this bit is set, an extended message frame was on the line

– Bit 30 encodes an RTR frame. If this bit is set, a remote transmission message frame was on the line

The message ID resides in the lower bits of this field

• The PAYLOAD field could be empty, when there were no data elements in the message

31

4 Special Notes

4.1.1 GPIO Usage Example

When generic architecture GPIO support is enabled in the kernel, some new entries are appearing in sysfs. Ev-
erything is controlled via read- and writable files to generate events on the digital lines.

We find all control files in /sys/class/gpio. In that path, there are a number of gpiochipXXX entries, with
XXX being a decimal number. Each of those folders provides information about a single gpio controller registerd
on the phyCORE-PXA270 board, for example with gpiochip0:

~$ ls /sys/class/gpio/gpiochip0
base label ngpio subsystem uevent

The entry base contains information about the base GPIO number and ngpio contains the whole amount of
GPIOs provided by this GPIO controller.
We use GPIO19 as an example to show the usage of single GPIOs.

~$ echo 19 > /sys/class/gpio/export

This way we export gpio19 for userspace usage. If the export was succesful, we will find a new directory named
/sys/class/gpio/gpio19 afterwards. Within this directory we will be able to find the entries to access the
functions of this gpio. If we wish to set the direction and initial level of the GPIO, we can use the command:

~$ echo high > /sys/class/gpio19/direction

This way we export GPIO19 for userspace usage and define our GPIO’s direction attribute to an output with
initially high level. We can change the value or direction of this GPIO by using the entries direction or value.

Note: This method is not very fast, so for quickly changing GPIOs it is still necessary to write a kernel driver. The
shown method works fine for example to influence an LED directly from userspace.

Tounexport analready exportedGPIO,write the correspondinggpio-number into/sys/class/gpio/export.

~$ echo 19 > /sys/class/gpio/unexport

Now the directory /sys/class/gpio/gpio19will disapear.

32

5 Getting help

Below is a list of locations where you can get help in case of trouble. For questions how to do something special
with PTXdist or general questions about Linux in the embedded world, try these.

5.1 Mailing Lists

5.1.1 About PTXdist in Particular

This is an English language public mailing list for questions about PTXdist. See

http://www.pengutronix.de/mailinglists/index_en.html

how to subscribe to this list. If you want to search through the mailing list archive, visit

http://www.mail-archive.com/

and search for the list ptxdist. Please note again that this mailing list is just related to the PTXdist as a software.
For questions regarding your specific BSP, see the following items.

5.1.2 About Embedded Linux in General

This is a German language public mailing list for general questions about Linux in embedded environments. See

http://www.pengutronix.de/mailinglists/index_de.html

how to subscribe to this list. Note: You can also send mails in English.

5.2 News Groups

5.2.1 About Linux in Embedded Environments

This is an English newsgroup for general questions about Linux in embedded environments.

comp.os.linux.embedded

5.2.2 About General Unix/Linux Questions

This is a German newsgroup for general questions about Unix/Linux programming.

de.comp.os.unix.programming

33

http://www.pengutronix.de/mailinglists/index_en.html
http://www.mail-archive.com/
http://www.pengutronix.de/mailinglists/index_de.html

5 Getting help

5.3 Chat/IRC

About PTXdist in particular

irc.freenode.net:6667

Create a connection to the irc.freenode.net:6667 server and enter the chatroom #ptxdist. This is an English
room to answer questions about PTXdist. Best time to meet somebody there is at European daytime.

5.4 phyCORE-PXA270 Support Mailing List

OSELAS.Phytec@pengutronix.de

This is an english language public maillist for all BSP related questions specific to Phytec’s hardware. See web
site

http://www.pengutronix.de/mailinglists/index_en.html

5.5 Commercial Support

You can order immediate support through customer specific mailing lists, by telephone or also on site. Ask our
sales representative for a price quotation for your special requirements.

Contact us at:

Pengutronix
Peiner Str. 6-8
31137 Hildesheim

Germany
Phone: +49 - 51 21 / 20 69 17 - 0
Fax: +49 - 51 21 / 20 69 17 - 55 55

or by electronic mail:

sales@pengutronix.de

34

http://www.pengutronix.de/mailinglists/index_en.html
mailto:sales@pengutronix.de

	OSELAS Quickstart for Phytec phyCORE-PXA270
	Getting a working Environment
	Download Software Components
	PTXdist Installation
	Main Parts of PTXdist
	Extracting the Sources
	Prerequisites
	Configuring PTXdist

	Toolchains
	Using Existing Toolchains
	Building a Toolchain
	Building the OSELAS.Toolchain for OSELAS.BSP-Phytec-phyCORE-12
	Protecting the Toolchain

	Building phyCORE-PXA270's root filesystem
	Extracting the Board Support Package
	Selecting a Software Platform
	Selecting a Hardware Platform
	Selecting a Toolchain
	Building the Root Filesystem
	Building an Image
	Target Side Preparation
	Stand-Alone Booting Linux
	Development Host Preparations
	Preparations on the Embedded Board
	Booting the Embedded Board

	Remote-Booting Linux
	Development Host Preparations
	Preparations on the Embedded Board
	Booting the Embedded Board

	Accessing Peripherals
	NOR Flash
	PWM Units
	GPIO Events
	GPIO
	LCD Graphics
	SPI Master
	GPIO Expander MAX7301
	MMC/SD Card
	AC97 Based Audio
	Sound Output
	Sound Record
	Advanced Sound Handling

	AC97 Based Touchscreen
	USB Host Controller Unit
	Network
	I²C Master
	I²C Realtime Clock RTC8564
	I²C Device 24W32

	Status LEDs
	Socket CAN
	About Socket-CAN

	Special Notes
	Analysing the CAN Bus Data Transfer
	GPIO Usage Example

	Getting help
	Mailing Lists
	About PTXdist in Particular
	About Embedded Linux in General

	News Groups
	About Linux in Embedded Environments
	About General Unix/Linux Questions

	Chat/IRC
	phyCORE-PXA270 Support Mailing List
	Commercial Support

