
Pengutronix e. K.
Peiner Straße 6–8
31137 Hildesheim

+49 (0)51 21 / 20 69 17 – 0 (Fon)
+49 (0)51 21 / 20 69 17 – 55 55 (Fax)

info@pengutronix.de

© 2009 Pengutronix, Hildesheim – Rev. 1325:1326

Quickstart Manual
OSELAS.BSP()

Phytec phyCORE-i.MX31

OSELAS.Support
OSELAS.Training
OSELAS.Development
OSELAS.Services

Contents

I OSELAS Quickstart for
Phytec phyCORE-i.MX31 4

1 Getting a working Environment 5
1.1 Download Software Components . 5
1.2 PTXdist Installation . 5

1.2.1 Main Parts of PTXdist . 5
1.2.2 Extracting the Sources . 6
1.2.3 Prerequisites . 7
1.2.4 Configuring PTXdist . 8

1.3 Toolchains . 9
1.3.1 Using Existing Toolchains . 10
1.3.2 Building a Toolchain . 10
1.3.3 Building the OSELAS.Toolchain for OSELAS.BSP-Phytec-phyCORE-12 10
1.3.4 Protecting the Toolchain . 11

2 Building phyCORE-i.MX31’s root filesystem 12
2.1 Extracting the Board Support Package . 12
2.2 Selecting a Software Platform . 13
2.3 Selecting a Hardware Platform . 13
2.4 Selecting a Toolchain . 13
2.5 Building the Root Filesystem . 14
2.6 Building an Image . 14

3 phyCORE-i.MX31 preparation 15
3.1 Updating the Bootloader . 15

3.1.1 Updating from a U-Boot-v1 . 15
3.1.2 Updating from a U-Boot-v2 . 16

4 Booting Linux 17
4.1 Target Side Preparation . 18
4.2 Stand-Alone Booting Linux . 19

4.2.1 Development Host Preparations . 19
4.2.2 Preparations on the Embedded Board . 19
4.2.3 Booting the Embedded Board . 20

4.3 Remote-Booting Linux . 20
4.3.1 Development Host Preparations . 21
4.3.2 Preparations on the Embedded Board . 21
4.3.3 Booting the Embedded Board . 21

5 Accessing Peripherals 23
5.1 NOR Flash . 23

2

Contents

5.2 NAND Flash . 24
5.2.1 NAND Usage . 24
5.2.2 NAND Preparation . 24

5.3 SRAMMemory . 25
5.4 Serial TTYs . 25
5.5 Network . 25
5.6 Camera Interface . 25
5.7 Using the Camera Support . 26
5.8 Turn on Camera Support in System . 26
5.9 Accessing Camera with GStreamer . 28
5.10 Basic Usage of GStreamer . 28

5.10.1 Simple Usage Example . 28
5.10.2 Simple Monochrome Usage Example . 29
5.10.3 Simple Colour Usage Example . 29

5.11 Advanced Usage of GStreamer . 29
5.11.1 Manually Setting the Frame Rate and Framesize . 30
5.11.2 Manipulate Input Frame Size with Plugins . 30
5.11.3 Manipulate Picture’s Orientation . 31
5.11.4 Using other Sinks Than the Framebuffer . 31

5.12 SPI Master . 32
5.13 Touch . 32
5.14 I²C Master . 33

5.14.1 I²C Realtime Clock RTC8564 . 33
5.14.2 I²C Device 24W32 . 33

5.15 Framebuffer . 33
5.16 USB Host Controller . 34
5.17 OneWire Interface . 34
5.18 MMC/SD Card . 35
5.19 CAN Bus . 35

5.19.1 About Socket-CAN . 35

6 Special Notes 38
6.1 Analysing the CAN Bus Data Transfer . 38
6.2 Using the NAND Flash for Root Filesystem . 39

6.2.1 Partitioning . 39
6.2.2 Erasing the Root Partition . 39
6.2.3 Writing a Root Filesystem Image . 39
6.2.4 Booting into the NAND Based Root Filesystem . 40

7 Getting help 41
7.1 Mailing Lists . 41

7.1.1 About PTXdist in Particular . 41
7.1.2 About Embedded Linux in General . 41

7.2 News Groups . 41
7.2.1 About Linux in Embedded Environments . 41
7.2.2 About General Unix/Linux Questions . 41

7.3 Chat/IRC . 42
7.4 phyCORE-i.MX31 Support Mailing List . 42
7.5 Commercial Support . 42

3

Part I

OSELAS Quickstart for
Phytec phyCORE-i.MX31

4

1 Getting a working Environment

1.1 Download Software Components

In order to follow this manual, some software archives are needed. There are several possibilities how to get
these: either as part of an evaluation board package or by downloading them from the Pengutronix web site.

The central place for OSELAS related documentation is http://www.oselas.com. This website provides all
required packages and documentation (at least for software components which are available to the public).

To build OSELAS.BSP-Phytec-phyCORE-12, the following archives have to be available on the development host:

• ptxdist-1.99.12.tgz

• ptxdist-1.99.12-patches.tgz

• OSELAS.BSP-Phytec-phyCORE-12.tar.gz

• OSELAS.Toolchain-1.99.3.2.tar.bz2

If they are not available on the development system yet, it is necessary to get them.

1.2 PTXdist Installation

The PTXdist build system can be used to create a root filesystem for embedded Linux devices. In order to start
development with PTXdist it is necessary to install the software on the development system.

This chapter provides information about how to install and configure PTXdist on the development host.

1.2.1 Main Parts of PTXdist

The most important software component which is necessary to build an OSELAS.BSP() board support package
is the ptxdist tool. So before starting any work we’ll have to install PTXdist on the development host.

PTXdist consists of the following parts:

The ptxdist Program: ptxdist is installed on the development host during the installation process.
ptxdist is called to trigger any action, like building a software packet, cleaning up the tree etc. Usually
the ptxdist program is used in a workspace directory, which contains all project relevant files.

A Configuration System: The config system is used to customize a configuration, which contains information
about which packages have to be built and which options are selected.

Patches: Due to the fact that some upstream packages are not bug free – especially with regard to cross compi-
lation – it is often necessary to patch the original software. PTXdist contains amechanism to automatically
apply patches to packages. The patches are bundled into a separate archive. Nevertheless, they are nec-
essary to build a working system.

5

http://www.oselas.com

1 Getting a working Environment

Package Descriptions: For each software component there is a ”recipe” file, specifying which actions have to be
done to prepare and compile the software. Additionally, packages contain their configuration sniplet for
the config system.

Toolchains: PTXdist does not come with a pre-built binary toolchain. Nevertheless, PTXdist itself is able
to build toolchains, which are provided by the OSELAS.Toolchain() project. More in-deep information
about the OSELAS.Toolchain() project can be found here: http://www.pengutronix.de/oselas/
toolchain/index_en.html

Board Support Package This is an optional component, mostly shipped aside with a piece of hardware. There
are various BSP available, some are generic, some are intended for a specific hardware.

1.2.2 Extracting the Sources

To install PTXdist, at least two archives have to be extracted:

ptxdist-1.99.12.tgz The PTXdist software itself.

ptxdist-1.99.12-patches.tgz All patches against upstream software packets (known as the ’patch repository’).

ptxdist-1.99.12-projects.tgz Generic projects (optional), can be used as a starting point for self-built projects.

The PTXdist and patches packets have to be extracted into some temporary directory in order to be built before
the installation, for example the local/ directory in the user’s home. If this directory does not exist, we have to
create it and change into it:

~# cd
~# mkdir local
~# cd local

Next steps are to extract the archives:

~/local# tar -zxf ptxdist-1.99.12.tgz
~/local# tar -zxf ptxdist-1.99.12-patches.tgz

and if required the generic projects:

~/local# tar -zxf ptxdist-1.99.12-projects.tgz

If everything goes well, we now have a PTXdist-1.99.12 directory, so we can change into it:

~/local# cd ptxdist-1.99.12
~/local/ptxdist-1.99.12# ls -l
total 487
drwxr-xr-x 13 jb users 1024 Mar 23 13:25 ./
drwxr-xr-x 22 jb users 3072 Mar 23 13:25 ../
-rw-r--r-- 1 jb users 377 Feb 23 22:23 .gitignore
-rw-r--r-- 1 jb users 18361 Apr 24 2003 COPYING
-rw-r--r-- 1 jb users 3731 Mar 11 18:09 CREDITS
-rw-r--r-- 1 jb users 115540 Mar 7 15:25 ChangeLog
-rw-r--r-- 1 jb users 58 Apr 24 2003 INSTALL
-rw-r--r-- 1 jb users 2246 Feb 9 14:29 Makefile.in
-rw-r--r-- 1 jb users 4196 Jan 20 22:33 README
-rw-r--r-- 1 jb users 691 Apr 26 2007 REVISION_POLICY

6

http://www.pengutronix.de/oselas/toolchain/index_en.html
http://www.pengutronix.de/oselas/toolchain/index_en.html

1 Getting a working Environment

-rw-r--r-- 1 jb users 54219 Mar 23 10:51 TODO
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 autoconf/
-rwxr-xr-x 1 jb users 28 Jun 20 2006 autogen.sh*
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 bin/
drwxr-xr-x 6 jb users 1024 Mar 23 11:27 config/
-rwxr-xr-x 1 jb users 226185 Mar 23 11:27 configure*
-rw-r--r-- 1 jb users 12390 Mar 23 11:16 configure.ac
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 debian/
drwxr-xr-x 8 jb users 1024 Mar 23 11:27 generic/
drwxr-xr-x 164 jb users 4096 Mar 23 11:27 patches/
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 platforms/
drwxr-xr-x 4 jb users 1024 Mar 23 11:27 plugins/
drwxr-xr-x 6 jb users 30720 Mar 23 11:27 rules/
drwxr-xr-x 7 jb users 1024 Mar 23 11:27 scripts/
drwxr-xr-x 2 jb users 1024 Mar 23 11:27 tests/

1.2.3 Prerequisites

Before PTXdist can be installed it has to be checked if all necessary programs are installed on the development
host. The configure script will stop if it discovers that something is missing.

The PTXdist installation is based on GNU autotools, so the first thing to be done now is to configure the packet:

~/local/ptxdist-1.99.12# ./configure

This will check your system for required components PTXdist relies on. If all required components are found the
output ends with:

[...]
checking whether /usr/bin/patch will work... yes

configure: creating ./config.status
config.status: creating Makefile
config.status: creating scripts/ptxdist_version.sh
config.status: creating rules/ptxdist-version.in

ptxdist version 1.99.12 configured.
Using '/usr/local' for installation prefix.

Report bugs to ptxdist@pengutronix.de

Without further arguments PTXdist is configured to be installed into/usr/local, which is the standard location
for user installed programs. To change the installation path to anything non-standard, we use the --prefix
argument to the configure script. The --help option offersmore information aboutwhat else can be changed
for the installation process.

The installation paths are configured in a way that several PTXdist versions can be installed in parallel. So if an
old version of PTXdist is already installed there is no need to remove it.

Oneof themost important tasks for theconfigure script is to find out if all the programsPTXdist depends on are
already present on the development host. The scriptwill stopwith an errormessage in case something ismissing.

7

1 Getting a working Environment

If this happens, the missing tools have to be installed from the distribution befor re-running the configure
script.

When the configure script is finished successfully, we can now run

~/local/ptxdist-1.99.12# make

All program parts are being compiled, and if there are no errors we can now install PTXdist into it’s final location.
In order to write to /usr/local, this step has to be performed as user root:

~/local/ptxdist-1.99.12# sudo make install
[enter root password]
[...]

If we don’t have root access to the machine it is also possible to install into some other directory with the
--prefix option. We need to take care that the bin/ directory below the new installation dir is added to our
$PATH environment variable (for example by exporting it in ˜/.bashrc).

The installation is now done, so the temporary folder may now be removed:

~/local/ptxdist-1.99.12# cd
~# rm -fr local

1.2.4 Configuring PTXdist

When using PTXdist for the first time, some setup properties have to be configured. Two settings are the most
important ones: Where to store the source packages and if a proxymust be used to gain access to the world wide
web.

Run PTXdist’s setup:

~# ptxdist setup

Due to PTXdist is working with sources only, it needs various source archives from the world wide web. If these
archives are not present on our host, PTXdist starts the wget command to download them on demand.

Proxy Setup

To do so, an internet access is required. If this access is managed by a proxy wget command must be adviced
to use it. PTXdist can be configured to advice the wget command automatically: Navigate to entry Proxies and
enter the required addresses and ports to access the proxy in the form:

<protocol>://<address>:<port>

Source Archive Location

Whenever PTXdist downloads source archives it stores these archives in a project localmanner. If we areworking
withmore than one project, every project would download its own required archives. To share all source archives
between all projects PTXdist can be configured to use only one archive directory for all projects it handles: Nav-
igate to menu entry Source Directory and enter the path to the directory where PTXdist should store archives to
share between projects.

8

1 Getting a working Environment

Generic Project Location

If we already installed the generic projects we should also configure PTXdist to know this location. If we already
did so, we can use the command ptxdist projects to get a list of available projects and ptxdist clone to
get a local working copy of a shared generic project.

Navigate to menu entry Project Searchpath and enter the path to projects that can be used in such a way. Here
we can configure more than one path, each part can be delemited by a colon. For example for PTXdist’s generic
projects and our own previous projects like this:

/usr/local/lib/ptxdist-1.99.12/projects:/office/my_projects/ptxdist

Leave the menu and store the configuration. PTXdist is now ready for use.

1.3 Toolchains

Before we can start building our first userland we need a cross toolchain. On Linux, toolchains are nomonolithic
beasts. Most parts of whatwe need to cross compile code for the embedded target comes from theGNUCompiler
Collection, gcc. The gcc packet includes the compiler frontend, gcc, plus several backend tools (cc1, g++, ld etc.)
which actually perform the different stages of the compile process. gcc does not contain the assembler, so we
also need the GNU Binutils packagewhich provides lowlevel stuff.

Cross compilers and tools are usually named like the corresponding host tool, but with a prefix – the GNU target.
For example, the cross compilers for ARM and powerpc may look like

• arm-softfloat-linux-gnu-gcc
• powerpc-unknown-linux-gnu-gcc

With these compiler frontends we can convert e.g. a C program into binary code for specific machines. So for
example if a C program is to be compiled natively, it works like this:

~# gcc test.c -o test

To build the same binary for the ARM architecture we have to use the cross compiler instead of the native one:

~# arm-softfloat-linux-gnu-gcc test.c -o test

Also part of what we consider to be the ”toolchain” is the runtime library (libc, dynamic linker). All programs
running on the embedded system are linked against the libc, which also offers the interface from user space
functions to the kernel.

The compiler and libc are very tightly coupled components: the second stage compiler, which is used to build
normal user space code, is being built against the libc itself. For example, if the target does not contain a hardware
floating point unit, but the toolchain generates floating point code, it will fail. This is also the case when the
toolchain builds code for i686 CPUs, whereas the target is i586.

So in order to make things working consistently it is necessary that the runtime libc is identical with the libc the
compiler was built against.

PTXdist doesn’t contain a pre-built binary toolchain. Remember that it’s not a distribution but a development
tool. But it can be used to build a toolchain for our target. Building the toolchain usually has only to be done
once. It may be a good idea to do that over night, because it may take several hours, depending on the target
architecture and development host power.

9

1 Getting a working Environment

1.3.1 Using Existing Toolchains

If a toolchain is already installed which is known to be working, the toolchain building step with PTXdist may be
omitted.

The OSELAS.BoardSupport() Packages shipped for PTXdist have been tested with the OSE-
LAS.Toolchains() built with the same PTXdist version. So if an external toolchain is being used
which isn’t known to be stable, a target may fail. Note that not all compiler versions and combi-
nations work properly in a cross environment.

Every OSELAS.BoardSupport() Package checks for its OSELAS.Toolchain it’s tested against, so using a different
toolchain vendor requires an additional step:

Open the OSELAS.BoardSupport() Package menu with:

~# ptxdist platformconfig

and navigate to architecture --> toolchain and check for specific toolchain vendor. Clear
this entry to disable the toolchain vendor check.

1.3.2 Building a Toolchain

PTXdist handles toolchain building as a simple project, like all other projects, too. So we can download the
OSELAS.Toolchain bundle and build the required toolchain for the OSELAS.BoardSupport() Package.

A PTXdist project generally allows to build into some project defined directory; all OSELAS.Toolchain projects
that come with PTXdist are configured to use the standard installation paths mentioned below.

All OSELAS.Toolchain projects install their result into /opt/OSELAS.Toolchain-1.99.3/.

Usually the /opt directory is not world writeable. So in order to build our OSELAS.Toolchain
into that directory we need to use a root account to change the permissions. PTXdist detects
this case and asks if we want to run sudo to do the job for us. Alternatively we can enter:
mkdir /opt/OSELAS.Toolchain-1.99.3
chown <username> /opt/OSELAS.Toolchain-1.99.3
chmod a+rwx /opt/OSELAS.Toolchain-1.99.3.

We recommend to keep this installation path as PTXdist expects the toolchains at /opt. Whenever we go to se-
lect a platform in a project, PTXdist tries to find the right toolchain fromdata read from the platform configuration
settings and a toolchain at /opt that matches to these settings. But that’s for our convenience only. If we decide
to install the toolchains at a different location, we still can use the toolchain parameter to define the toolchain to
be used on a per project base.

1.3.3 Building the OSELAS.Toolchain for OSELAS.BSP-Phytec-phyCORE-12

To compile and install an OSELAS.Toolchain we have to extract the OSELAS.Toolchain archive, change into the
new folder, configure the compiler in question and start the build.

The required compiler to build the OSELAS.BSP-Phytec-phyCORE-12 board support package is

10

1 Getting a working Environment

arm-1136jfs-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.19_kernel-2.6.27-sanitized

So the steps to build this toolchain are:

~# tar xf OSELAS.Toolchain-1.99.3.2.tar.bz2
~# cd OSELAS.Toolchain-1.99.3.2
~/OSELAS.Toolchain-1.99.3.2# ptxdist select ptxconfigs/\

�

�

�

�
Enter

> arm-1136jfs-linux-gnueabi_gcc-4.3.2_glibc-2.8_binutils-2.19_kernel-2.6.27-sanitized.ptxconfig
~/OSELAS.Toolchain-1.99.3.2# ptxdist go

At this stage we have to go to our boss and tell him that it’s probably time to go home for the day. Even on
reasonably fast machines the time to build an OSELAS.Toolchain is something like around 30 minutes up to a
few hours.

Measured times on different machines:

• Single Pentium 2.5 GHz, 2 GiB RAM: about 2 hours

• Turion ML-34, 2 GiB RAM: about 1 hour 30 minutes

• Dual Athlon 2.1 GHz, 2 GiB RAM: about 1 hour 20 minutes

• Dual Quad-Core-Pentium 1.8 GHz, 8 GiB RAM: about 25 minutes

Another possibility is to read the next chapters of this manual, to find out how to start a new project.

When the OSELAS.Toolchain project build is finished, PTXdist is ready for prime time and we can continue with
our first project.

1.3.4 Protecting the Toolchain

All toolchain components are built with regular user permissions. In order to avoid accidential changes in the
toolchain, the files should be set to read-only permissions after the installation has finished successfully. It is also
possible to set the file ownership to root. This is an important step for reliability, so it is highly recommended.

Building Additional Toolchains

The OSELAS.Toolchain-1.99.3.2 bundle comes with various predefined toolchains. Refer the ptxconfigs/
folder for other definitions. To build additional toolchains we only have to clean our current toolchain project,
removing the current selected_ptxconfig link and creating a new one.

~/OSELAS.Toolchain-1.99.3.2# ptxdist clean
~/OSELAS.Toolchain-1.99.3.2# rm selected_ptxconfig
~/OSELAS.Toolchain-1.99.3.2# ptxdist select \

�

�

�

�
Enter

> ptxconfigs/any_other_toolchain_def.ptxconfig
~/OSELAS.Toolchain-1.99.3.2# ptxdist go

All toolchains will be installed side by side architecture dependent into directory

/opt/OSELAS.Toolchain-1.99.3/architecture_part.

Different toolchains for the same architecture will be installed side by side version dependent into directory

/opt/OSELAS.Toolchain-1.99.3/architecture_part/version_part.

11

2 Building phyCORE-i.MX31’s root filesystem

2.1 Extracting the Board Support Package

In order to work with a PTXdist based project we have to extract the archive first.

~# tar -zxf OSELAS.BSP-Phytec-phyCORE-12.tar.gz
~# cd OSELAS.BSP-Phytec-phyCORE-12

PTXdist is project centric, so now after changing into the new directory we have access to all valid components.

~/OSELAS.BSP-Phytec-phyCORE-12# ls -l

total 44
-rw-r--r-- 1 jb users 4078 Dec 3 18:10 ChangeLog
-rw-r--r-- 1 jb users 1313 Nov 1 13:31 Kconfig
-rw-r--r-- 1 jb users 1101 Nov 4 21:05 TODO
drwxr-xr-x 10 jb users 4096 Jan 14 17:33 configs/
drwxr-xr-x 3 jb users 4096 Jan 14 15:08 documentation/
drwxr-xr-x 5 jb users 4096 Nov 13 12:30 local_src/
drwxr-xr-x 5 jb users 4096 Dec 15 10:19 patches/
drwxr-xr-x 6 jb users 4096 Jun 8 2008 projectroot/
drwxr-xr-x 3 jb users 4096 Nov 1 14:18 protocols/
drwxr-xr-x 4 jb users 4096 Jan 8 16:28 rules/
drwxr-xr-x 3 jb users 4096 Jan 7 08:55 tests/

Notes about some of the files and directories listed above:

ChangeLog Here you can read what has changed in this release. Note: This file does not always exist.

documentation If this BSP is one of our OSELAS BSPs, this directory contains the Quickstart you are currenly
reading in.

configs Amultiplatform BSP contains configurations for more than one target. This directory contains the plat-
form configuration files.

projectroot Contains files and configuration for the target’s runtime. A running GNU/Linux system uses many
text files for runtime configuration. Most of the time the generic files from the PTXdist installation will fit
the needs. But if not, customized files are located in this directory.

rules If something special is required to build the BSP for the target it is intended for, then this directory contains
these additional rules.

patches If some special patches are required to build the BSP for this target, then this directory contains these
patches on a per package basis.

tests Contains test scripts for automated target setup.

12

2 Building phyCORE-i.MX31’s root filesystem

2.2 Selecting a Software Platform

First of all we have to select a software platform for the userland configuration. This step defines what kind of ap-
plicationswill be built for the hardware platform. TheOSELAS.BSP-Phytec-phyCORE-12 comeswith a predefined
configuration we select in the following step:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist select \
�

�

�

�
Enter

> configs/ptxconfig
info: selected ptxconfig:

'configs/ptxconfig'

2.3 Selecting a Hardware Platform

Before we can build this BSP, we need to select one of the possible targets to build for. In this case we want to
build for the phyCORE-i.MX31:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist platform \
�

�

�

�
Enter

> configs/phyCORE-i.MX31-1.99.12-3/platformconfig
info: selected platformconfig:

'configs/phyCORE-i.MX31-1.99.12-3/platformconfig'

Note: If you have installed the OSELAS.Toolchain() at its default location, PTXdist should already have detected
the proper toolchain while selecting the platform. In this case it will output:

found and using toolchain:
'/opt/OSELAS.Toolchain-1.99.3/arm-1136jfs-linux-gnueabi/

gcc-4.3.2-glibc-2.8-binutils-2.19-kernel-2.6.27-sanitized/bin'

If it fails you can continue to select the toolchain manually as mentioned in the next section. If this autodetection
was successful, we can omit the steps of the section and continue to build the BSP.

2.4 Selecting a Toolchain

If not automatically detected, the last step in selecting various configurations is to select the toolchain to be used
to build everything for the target.

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist toolchain \
�

�

�

�
Enter

> /opt/OSELAS.Toolchain-1.99.3/arm-1136jfs-linux-gnueabi/\
�

�

�

�
Enter

> gcc-4.3.2-glibc-2.8-binutils-2.19-kernel-2.6.27-sanitized/bin

13

2 Building phyCORE-i.MX31’s root filesystem

2.5 Building the Root Filesystem

Now everything is prepared for PTXdist to compile the BSP. Starting the engines is simply done with:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist go

PTXdist does now automatically find out from the selected_ptxconfig and selected_platformconfig
files which packages belong to the project and starts compiling their targetinstall stages (that one that actually
puts the compiled binaries into the root filesystem). While doing this, PTXdist finds out about all the dependen-
cies between the packets and brings them into the correct order.

While the command ptxdist go is running we can watch it building all the different stages of a packet. In
the end the final root filesystem for the target board can be found in the platform-phyCORE-i.MX31/root/
directory and a bunch of *.ipk packets in the platform-phyCORE-i.MX31/packages/ directory, containing
the single applications the root filesystem consists of.

2.6 Building an Image

After we have built a root filesystem, we canmake an image, which can be flashed to the target device. To do this
call

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist images

PTXdist will then extract the content of priorly created *.ipk packages to a temporary directory and generate an
image out of it. PTXdist supports following image types:

• hd.img: contains grub bootloader, kernel and root files in a ext2 partition. Mostly used for X86 target
systems.

• root.jffs2: root files inside a jffs2 filesystem.

• uRamdisk: a u-boot loadable Ramdisk

• initrd.gz: a traditional initrd RAM disk to be used as initrdramfs by the kernel

• root.ext2: root files inside a ext2 filesystem.

• root.squashfs: root files inside a squashfs filesystem.

• root.tgz: root files inside a plain gzip compressed tar ball.

The to be generated Image types and addtional options can be defined with

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist platformconfig

Then select the submenu "image creation options". The generated image will be placed into
platform-phyCORE-i.MX31/images/.

Only the content of the *.ipk packages will be used to generate the image. This means that files
which are put manually into the platform-phyCORE-i.MX31/root/will not be enclosed in
the image. If custom files are needed for the target. Install it with ptxdist.

14

3 phyCORE-i.MX31 preparation

This step can be omitted if the boot loader is recent enough: For this BSP at least theU-Boot-2.0.0-rc7 is required.

3.1 Updating the Bootloader

After building thewholeBSPwecopy thegenerated fileplatform-phyCORE-i.MX31/images/u-boot-v2-image
to our configured tftp exported directory.

There are some differences in the handling depending on the current boot loader we will find on our new
phyCORE-i.MX31.

3.1.1 Updating from a U-Boot-v1

When switching on the phyCORE-i.MX31 a U-Boot V1 states something similar to:
U-Boot 1.2.0-phycore_mx31-3 (May 31 2007 - 15:30:49)

The date may differ, but the important part is the first ’1’ in the 1.2.0 release. It will identify this U-Boot as a V1
type.

First of all: Write down the MAC address of your card. You will need it immediately!

Now on the target side enter:

uboot> tftpboot 0x80000000 u-boot-v2-image
uboot> protect off 0xa0000000 +0x20000
uboot> erase 0xa0000000 +0x20000
uboot> cp.b 0x80000000 0xa0000000 $(filesize)
uboot> reset

Erasing the bootloader part of the flash is a very delicate step. If anything went wrong our
phyCORE-i.MX31 is clobbered and can’t be used any more. Only JTAG tools are able to bring
the target to life again!

Now the new U-Boot-v2 comes up and its first question is:

no MAC address set for eth0. please enter the one found on your board:

Reenter the MAC address, and after it save it to the persistant memory.

uboot:/ saveenv

15

3 phyCORE-i.MX31 preparation

3.1.2 Updating from a U-Boot-v2

This update is only required when an older U-Boot-v2 than 2.0.0-rc9 is in use. We can omit this step, if our
phyCORE-i.MX31 contains such a revision.

On the target side we enter:
uboot:/ tftp u-boot-v2-image to load this binary image into the RAM disk of our target.

To replace the current U-Boot in our target we enter the following commands:

uboot:/ unprotect /dev/self0
uboot:/ erase /dev/self0
uboot:/ cp u-boot-v2-image /dev/self0
uboot:/ protect /dev/self0

The new U-Boot revision is now stored in the NOR flash.

16

4 Booting Linux

Now that there is a root filesystem in our workspace we’ll have to make it visible to the phyCORE-i.MX31. There
are two possibilities to do this:

1. Making the root filesystem persistent in the onboard media.

2. Booting from the development host, via network.

Figure 4.1: Booting the root filesystem, built with PTXdist, from the host via network and from flash.

Figure 4.1 shows both methods. The main method used in the OSELAS.BSP-Phytec-phyCORE-12 BSP is to pro-
vide all needed components to run on the target itself. The Linux kernel and the root filesystem is persistent in
the media the target features. This means the only connection needed is the nullmodem cable to see what is
happening on our target. We call this method standalone.

The other method is to provide all needed components via network. In this case the development host is con-
nected to the phyCORE-i.MX31 with a serial nullmodem cable and via ethernet; the embedded board boots into
the bootloader, then issues a TFTP request on the network and boots the kernel from the TFTP server on the host.
Then, after decompressing the kernel into the RAM and starting it, the kernel mounts its root filesystem via NFS
(Network File System) from the original location of the platform-phyCORE-i.MX31/root/ directory in our
PTXdist workspace.

The OSELAS.BSP-Phytec-phyCORE-12 provides both methods. The latter one is especially for development pur-
poses, as it provides a very quick turnaround while testing the kernel and the root filesystem.

This chapter describes how to set up our target with features supported by PTXdist to simplify this challange.

17

4 Booting Linux

4.1 Target Side Preparation

The phyCORE-i.MX31 uses U-Boot as its bootloader. U-Boot can be customized with environment variables and
scripts to support any boot constellation. OSELAS.BSP-Phytec-phyCORE-12 comes with a predefined environ-
ment setup to easily bring up the phyCORE-i.MX31.

Usually the environment doesn’t have to be set manually on our target. PTXdist comes with an automated setup
procedure to achieve a correct environment on the target.

Due to the fact that some of the values of these U-Boot environment variables must meet our local network envi-
ronment and development host settingswe have to define themprior to running the automated setup procedure.

Note: At this point of time itmakes sense to check if the serial connection is alreadyworking, because it is essential
for any further step we will do.
We can try to connect to the target with our favorite terminal application (minicom or kermit for example).
With a powered target we identify the correct physical serial port and ensure that the communication is working.
Make sure to leave this terminal application to unlock the serial port prior to the next steps.

To set up development host and target specific value settings, we run the command

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist boardsetup

We navigate to ”Network Configuration” and replace the default settings with our local network settings. In
the next step we also should check if the ”Host’s Serial Configuration” entries meet our local development host
settings. Especially the ”serial port” must correspond to our real physical connection.

When everything is set up, we can ”Exit” the dialog and and save our new settings.

Now the command

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist test setenv

will automatically set up a correct default environment on our phyCORE-i.MX31. We have to powercycle our
target to make this step happen.
It should output lines like these when it was successful:

===============================
Please power on your board now!
===============================

Logging into U-Boot.....................OK
Setting new environment.................OK
Test finished successfully.

Note: If it fails, reading platform-phyCORE-i.MX31/test.logwill give further information about why it has
failed. Also extending the command line shown above by a --debug can help to see whats going wrong.

Users reported this step could fail if the Linux system running PTXdistis a virtual machine as
guest in an operating system from Redmont. In this case it seems at least one of the two OSes is
eating up characters sent to the serial line. Pengutronix recommends running PTXdiston a real
Linux system.

18

4 Booting Linux

4.2 Stand-Alone Booting Linux

To use the the target standalone, the rootfs has to be made persistent in one of the onboard suported media of
the phyCORE-i.MX31. The following sections describe the steps necessary to bring the rootfs into the onboard
NOR type flash.

Only for preparation we need a network connection to the embedded board and a network aware bootloader
which can fetch any data from a TFTP server.

After preparation is done, the phyCORE-i.MX31 can work independently from the development host. We can
”cut” the network (and serial cable) and the phyCORE-i.MX31 will continue to work.

4.2.1 Development Host Preparations

On the development host a TFTP server has to be installed and configured. The exact method to do so is distri-
bution specific; as the TFTP server is usually started by one of the inetd servers, the manual sections describing
inetd or xinetd should be consulted.

Usually TFTP servers are using the /tftpboot directory to fetch files from, so if we want to push kernel images
into this directory we have to make sure we are able to write there. As the access permissions are normally
configured in a way to let only user root write to /tftpboot we have to change it. The boardsetup scripts
coming with this BSP expect write permission in TFTP directory!

We can run a simple:

~# touch /tftpboot/my_file

to test if we have permissions to create files in this directory. If it fails we have to ask the administrator to grant
these permissions.

Note: We must /tftpboot part of the command above with our local settings.

4.2.2 Preparations on the Embedded Board

To boot phyCORE-i.MX31 stand-alone, anything needed to run a Linux system must be locally accessible. So at
this point of time we must replace any current content in phyCORE-i.MX31’s flash memory.

But first we must create the new root filesystem image prepared for its usage on the phyCORE-i.MX31:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist images

To simplify this step, OSELAS.BSP-Phytec-phyCORE-12 comes with an automated setup procedure for this step.
To use this procedure we run the command:

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist test flash

Note: This command requires a serial and a network connection. The network connection can be cut after this
step.

This command will automatically write a root filesystem to the correct flash partition on the phyCORE-i.MX31. It
only works if we previously have set up the environment variables successfully (described at page 18).
The command should output lines like this when it was successful:

19

4 Booting Linux

===============================
Please power on your board now!
===============================

Logging into U-Boot.....................OK
Flashing kernel.........................OK
Flashing rootfs.........................OK
Flashing oftree.........................OK
Test finished successfully.

Note: If it fails, reading platform-phyCORE-i.MX31/test.logwill give further information about why it has
failed.

4.2.3 Booting the Embedded Board

To check that everything went successfully up to here, we can run the boot test.

~/OSELAS.BSP-Phytec-phyCORE-12# ptxdist test boot

===============================
Please power on your board now!
===============================

Checking for U-Boot.....................OK
Checking for Kernel.....................OK
Checking for init.......................OK
Checking for login......................OK
Test finished successfully.

This will check if the environment settings and flash partitioning are working as expected, so the target comes up
in stand-alone mode up to the login prompt.

Note: If it fails, reading platform-phyCORE-i.MX31/test.logwill give further information about why it has
failed.

After the next reset or powercycle of the board, it should boot the kernel from the flash, start it and mount the
root filesystem also from flash.

Note: The default login account is rootwith an empty password.

4.3 Remote-Booting Linux

The next method wewant to try after building a root filesystem is the network-remote boot variant. This method
is especially intended for development as everything related to the root filesystem happens on the host only.
It’s the fastest way in a phase of a project, where things are changing frequently. Any change made in the local
platform-phyCORE-i.MX31/root/ directory simply ”appears” on the embedded device immediately.

All we need is a network interface on the embedded board and a network aware bootloader which can fetch the
kernel from a TFTP server.

20

4 Booting Linux

4.3.1 Development Host Preparations

If we already have booted the phyCORE-i.MX31 locally (as described in the previous section), all of the develop-
ment host preparations are done.

If not, then a TFTP server has to be installed and configured on the development host. The exactmethod of doing
this is distribution specific; as the TFTP server is usually started by one of the inetd servers, themanual sections
describing inetd or xinetd should be consulted.

Usually TFTP servers are using the /tftpboot directory to fetch files from, so if wewant to push data files to this
directory, we have to make sure we are able to write there. As the access permissions are normally configured in
a way to let only user root write to /tftpboot we have to change it. If we don’t want to change the permission
or if its disallowed to change anything, the sudo command may help.

~/OSELAS.BSP-Phytec-phyCORE-12# sudo cp platform-phyCORE-i.MX31/images/linuximage
/tftpboot/uImage-pcm037

The NFS server is not restricted to a certain filesystem location, so all we have to do on most distributions is to
modify the file /etc/exports and export our root filesystem to the embedded network. In this example file the
whole work directory is exported, and the ”lab network” between the development host is 192.168.23.0, so the
IP addresses have to be adapted to the local needs:

/home/<user>/work 192.168.23.0/255.255.255.0(rw,no_root_squash,sync)

Note: Replace <user>with your home directory name.

4.3.2 Preparations on the Embedded Board

We already provided the phyCORE-i.MX31 with the default environment at page 18. So there is no additional
preparation required here.

4.3.3 Booting the Embedded Board

The default environment settings coming with the OSELAS.BSP-Phytec-phyCORE-12 has the possibility to boot
from the internal flash or from the network. Configuration happens in the file /env/config. As U-Boot-v2 uses
a full shell like console you can edit this file to configure the other scripts (the boot script for example).

To edit this configuration file we run the edit command on it:

uboot:/ edit /env/config

Wemove to the lines that define the kernel_loc and rootfs_loc variables. They can be defined to nor, nand or net.
nor let the boot script load everything from the internal NOR flash memory, nand from the NAND flash memory.

In this example we change it to net to load all parts from the network. When we do that, we also have to con-
figure the network setup a few lines above in this file. We setup these values to the network we want to run the
phyCORE-i.MX31.

Leaving this editor with saving the changes happenswith CTRL-D. Leaving it without saving the changes happens
with CTRL-C.

Note: Saving here means the changes will be saved to the RAM disks U-Boot-v2 uses for the environment. To
store it to the persistent memory, an additional saveenv command is required.

21

4 Booting Linux

Now its time to boot the phyCORE-i.MX31. To do so, simply run:

uboot:/ boot

This command should boot phyCORE-i.MX31 into the login prompt.

Note: The default login account is rootwith an empty password.

22

5 Accessing Peripherals

The following sections provide an overview of the supported hardware components and their corresponding
operating system drivers. Further changes can be ported on demand of the customer.

Phytec’s phyCORE-i.MX31 starter kit consists of the following individual boards:

1. The phyCORE-i.MX31 module itself (PCM-037), containing the i.MX31, RAM, flash and several other pe-
ripherals.

2. The starter kit baseboard (PCM970).

To achieve maximum software re-use, the Linux kernel offers a sophisticated infrastructure, layering software
components into board specific parts. The OSELAS.BSP() tries to modularize the kit features as far as possible;
that means that when a customized baseboards or even customer specific module is developed, most of the
software support can be re-used without error prone copy-and-paste. So the kernel code corresponding to the
boards above can be found in

1. arch/arm/mach-mx3/pcm037.c for the CPU module

In fact, software re-use is one of the most important features of the Linux kernel and especially of the ARM port,
which always had to fight with an insane number of possibilities of the System-on-Chip CPUs.

Note that the huge variety of possibilities offered by the phyCORE modules makes it difficult
to have a completely generic implementation on the operating system side. Nevertheless, the
OSELAS.BSP() can easily be adapted to customer specific variants. In case of interest, contact
the Pengutronix support (support@pengutronix.de) and ask for a dedicated offer.

The following sections provide an overview of the supported hardware components and their operating system
drivers.

5.1 NOR Flash

Linux offers the Memory Technology Devices Interface (MTD) to access low level flash chips, directly connected
to a SoC CPU.

Modern kernels offer a method to define flash partitions on the kernel command line, using the mtdparts com-
mand line argument:

physmap-flash.0:256k(uboot)ro,128k(ubootenv),2M(kernel),-(root)

This line, for example, specifies several partitions with their size and name which can be used as /dev/mtd0,
/dev/mtd1 etc. from Linux. Additionally, this argument is also understood by reasonably new U-Boot boot-
loaders, so if there is any need to change the partitioning layout, the U-Boot environment is the only place where
the layout has to be changed.

From userspace the NOR flash partitions can be accessed as

23

5 Accessing Peripherals

• /dev/mtdblock0 (e.g. U-Boot partition)

• /dev/mtdblock1 (e.g. U-Boot environment partition)

• /dev/mtdblock2 (e.g. Kernel partition)

• /dev/mtdblock3 (e.g. Linux rootfs partition)

Note: This is an example only. The partitioning on our phyCORE-i.MX31 target can differ from this layout.

Only the /dev/mtdblock3 on the phyCORE-i.MX31 has a filesystem, so the other partitions cannot bemounted
into the rootfs. The only way to access them is by pushing a prepared flash image into the corresponding
/dev/mtd device node.

5.2 NAND Flash

The phyCORE-i.MX31 module comes with a 64MiB NAND memory to be used as an additional media to store
applications and their data files. This type of media will be managed by the JFFS2 filesystem. This filesystem
uses compression and decompression on the fly, so there is a change to bring more than 64MiB of data into this
device.

NOTE: JFFS2 has a disadvantage: We cannot use the mmap()-API to manipulate data on a mapped file.

5.2.1 NAND Usage

From userspace the NAND flash partitions can be accessed as

• /dev/mtdblock4 (U-Boot partition)

• /dev/mtdblock5 (U-Boot environment partition)

• /dev/mtdblock6 (Kernel partition)

• /dev/mtdblock7 (Linux rootfs partition)

5.2.2 NAND Preparation

On a fresh phyCORE-i.MX31 the NAND memory can be unformatted. In this case the mount will fail. To prepare
it for later usage, we must prepare it by erasing the whole memory.

~# flash_eraseall /dev/mtd7

After erasing, mounting is possible via:

~# mount /media/nand

Note: Mounting thismemory the first time after erasing it can take a few seconds. In this case the JFFS2 filesystem
does its own preparation of the memory in the background.

Now this filesystem is available through /media/nand and can be used like any other filesystem.

24

5 Accessing Peripherals

5.3 SRAMMemory

The phyCORE-i.MX31 is shipped with a 512 kiB SRAM. We can use it as plain memory or we can put a filesystem
on top of it and use it as a regular part of the root filesystem.

• /dev/mtdblock8 is the full SRAM partition.

To create a filesystem we type:

~# mkfs.minix -n 30 /dev/mtdblock8
704 inodes
2048 blocks
Firstdatazone=26 (26)
Zonesize=1024
Maxsize=268966912

Note: The output of the mkfs.minixmy differ due to different SRAM sizes.

And to mount it:

~# mount -t minix /dev/mtdblock8 /mnt

5.4 Serial TTYs

The i.MX31 SoC supports up to 4 so called UART units. On the phyCORE-i.MX31 two UARTs are routed to the
connectors and can be used in user’s application.

• ttymxc0 at connector P1 (bottom connector) used as the main kernel and control console.

• ttymxc2 at connector P1 (top connector). Unused in this BSP

5.5 Network

The phyCORE-i.MX31 module has an SMSC SMC911x ethernet chip onboard, which is being used to provide the
eth0 network interface. The interface offers a standard Linux network port which can be programmed using the
BSD socket interface.

5.6 Camera Interface

In this section we will handle the usage of the camera interface. Depending on what we want to use the camera
for we have numerous possibilities here combining different hardware as well as software configuration.

25

5 Accessing Peripherals

5.7 Using the Camera Support

Before we start with details, we should know that along with our OSELAS.BSP-Phytec-phyCORE-12 BSP comes
a set of preconfigured scripts which are capable to do some basic guessing what kind of hard/software we have
and start the camera capturing with proper parameters.

Neverless one should go through the following sections to understand how the stuff exactly works.

Wecan find the convenience scripts onour target under/home/phycore-gst-examples-1.1.2. The version
number in the path may vary.

~# ls /home/phycore-gst-examples-1.1.2/
bwcam-fbdev_240x320 bwcam-fbdev_640x480 bwcam-xv
colcam-fbdev_240x320 colcam-fbdev_640x480 colcam-xv func.sh

The name of the scripts stands for for what they can be used. If we e.g have a b/w Camera and a 240x320 display
on our board, we can start capturing by simply doing:

~# cd /home/phycore-gst-examples-1.1.2/
~# ./bwcam-fbdev_240x320
removing old drivers ...
loading bw cam drivers ...
camera 0-0: PXA Camera driver attached to camera 0
camera: probe of 0-0 failed with error -121
camera 0-0: PXA Camera driver attached to camera 0
camera 0-0: Detected a MT9V022 chip ID 1313, monochrome sensor
camera 0-0: PXA Camera driver detached from camera 0
starting gstreamer ...
camera 0-0: PXA Camera driver attached to camera 0
New clock: GstSystemClock

The occuring error messages can be ignored: The script tries to probe for a suitable camera module. We will
only see them if we access the board through a serial terminal. If everything goes well, there won’t be any further
messages on the console and a camera picture should be visible on the display. We can stop capturing and
displaying by pressing the well known ctrl+c.

Below a list of scripts the OSELAS.BSP-Phytec-phyCORE-12 BSP provides and their intentional usage:

• bwcam-fbdev_640x480 for b/w camera+640x480 display

• colcam-fbdev_240x320 for colour camera + 240x320 display

• colcam-fbdev_640x480 for colour camera + 640x480 display

• bwcam-xv for b/w camera + X enabled display

• colcam-xv for colour camera + X enalbed display

5.8 Turn on Camera Support in System

The phyCORE-i.MX31 comes with a camera, which allows us to use the video capture interface. Phytec ships
different kind of cameras with their development kits. Depending on the kit we might need different driver for
these cameras. There are two camera drivers we can choose:

26

5 Accessing Peripherals

mt9v022 This driver supportsMicron MT9V022 picture sensors. If we have a camera of the VM-007 series, we
will most probably need this driver.

mt9m001 This driver supportsMicron MT9M001 picture sensors, as built in cameras of the VM-006 series.

The mt9v022 driver for theMicron MT9V022 picture sensor is not capable to detect if the cam-
era comes with a colour or monochrome sensor. It has to be defined with module parameter
”sensor_type” manually

When loaded the driver tries to detect a camera, which it supports. If the check is successful, the driver will
register the camera device to the video subsystem and creates a device node name /dev/videoX in the file
system, where the X stands for the numbering of the device. If we have one camera only, which is mostly the
case, it should be /dev/video0. If our system misses this file, we have most probably loaded the wrong driver
or our camera is not attached properly.

As default the driver mt9v022 is loaded with b/w support. If we have another camera attached to our kit, we
have to load a different camera driver or reload our driver with another module parameter. To do so, we must
unload the current driver first:

~# rmmod mt9v022

Note: Before we proceed we have to ensure the module pca953x is loaded, which must be present before any
camera module can be loaded. We can run the following command to check it:

~# lsmod | grep -o pca953x
pca953x

If we don’t get any output, we must load the pca953xmodule manually first:

~# modprobe pca953x

If we want to load mt9v022 with support for colour sensors, we can reload the same module with the following
module parameter.

~# modprobe mt9v022 sensor_type=colour

In contrast to the mt9v022 kernel module the mt9m001 kernel module doesn’t have any module parameters. If
we want to load it, we just do:

~# modprobe mt9m001

27

5 Accessing Peripherals

5.9 Accessing Camera with GStreamer

Once we have intialized the camera support in our system properly, we can use GStreamer to access the video
stream. GStreamer is a streaming media framework, based on graphs of filters which operate on media data.
GStreamer consists of several command line tools and sets of plugins. Generally there are three kind of plugins:

Source Plugins These plugins access directlymedia sources on the system and pass themedia data on to further
plugins. For example, we can use the v4l2src plugin to access the camera.

Pipe Plugins These plugins are like double ended tubes. We can put data in one side and take the processed
data from the other side.

Sink Plugins These plugins take the media data and put them to ”sinks”, which are output devices like frame-
buffer device, x.org client or even Network sockets.

5.10 Basic Usage of GStreamer

Using GStreamer on command line is like building a pipeline. We need a source plugin at the beginning, some
pipe plugins in the middle and a sink plugin at the other end. To launch the pipeline, we need the command-line
tool gst-launch.

5.10.1 Simple Usage Example

To get a feeling how this workswe can use the built-in fake plugins to build a pipeline, which simply process some
empty buffers:

~# gst-launch -v fakesrc num-buffers=1 ! fakesink

This will print out output that looks simlar to this:

Setting pipeline to PAUSED ...
/pipeline0/fakesrc0: last-message = "get ******* > (0 bytes, timestamp: none,
duration: none, offset: 0, offset_end: -1, flags: 0) 0x42e68"

/pipeline0/fakesink0: last-message = "preroll ******* "
/pipeline0/fakesink0: last-message = "event ******* E (type: 102, GstEventNewsegment,
update=(boolean)false, rate=(double)1, applied_rate=(double)1,
format=(GstFormat)GST_FORMAT_BYTES, start=(gint64)0, stop=(gint64)-1,
position=(gint64)0;) 0x3ccc0"

Pipeline is PREROLLING ...
Pipeline is PREROLLED ...
Setting pipeline to PLAYING ...
/pipeline0/fakesink0: last-message = "chain ******* < (0 bytes,
timestamp: 0:00:00.000000000, duration: none, offset: 0,
offset_end: -1, flags: 32) 0x42e68"

/pipeline0/fakesink0: last-message = "event ******* E (type: 86,) 0x3ccc0"
New clock: GstSystemClock
Got EOS from element "pipeline0".
Execution ended after 4653538 ns.

28

5 Accessing Peripherals

Setting pipeline to PAUSED ...
Setting pipeline to READY ...
Setting pipeline to NULL ...
FREEING pipeline ...

All plugins are connected with an exclamation mark (!)

If this works properly, we can go on to do some real work in the next section.

5.10.2 Simple Monochrome Usage Example

The following line will grab the video stream from a monochrome camera and put it on the framebuffer device:

~# gst-launch v4l2src ! video/x-raw-gray ! ffmpegcolorspace ! fbdevsink

Three plugins are used here:

1. v4l2src plugin grabs the raw frames from the camera using the Video4Linux2 API

2. video/x-raw-gray in the pipeline is a capability filter. It sets a mime type to specify a desired video
format (in this case grayscale)

Some cameras do not provide their framesize properly to the system or just simply provide a
frame bigger than the system can process. In this case the command will fail, and we have to
define the framesize manually. Refer section 5.11.2 on page 30 to find out how to do it.

3. ffmpegcolorspace takes the stream and converts it to suitable colourspace

4. fbdevsink takes the converted stream and displays it on a framebuffer device

5.10.3 Simple Colour Usage Example

If we have a colour sensor instead, we can use the following line to process the videostream:

~# gst-launch v4l2src ! video/x-raw-bayer ! bayer2rgb bg_first=false \
�

�

�

�
Enter

> ! ffmpegcolorspace ! fbdevsink

Here we are using the bayer2rgb plugin to convert the raw content provided by the camera sensor into an RGB
signal.

Thebayer2rgb plugin uses a parameter bg_first to define if the first line of the bayer pattern
provided by the sensor is a blue/green line or a green/red line. We can try to change this to true
if we experience any troubles with our colourspace.

5.11 Advanced Usage of GStreamer

Here are the details:

29

5 Accessing Peripherals

5.11.1 Manually Setting the Frame Rate and Framesize

Along with the mimetype definition we can also optionally set information like frame size and rate. e.g.

~# gst-launch v4l2src \
�

�

�

�
Enter

> ! video/x-raw-gray,width=640,height=480,framerate=30/1 \
�

�

�

�
Enter

> ! ffmpegcolorspace ! fbdevsink

Doing this will set a fix value for the input frame format. Such options may come handy if we e.g. have trouble
with the size of the input stream. Note:

• If we adjust the width and height ourself, the shown region starts at the upperlefter corner of the frame
captured by the camera.

• The frame size we can choose depends on the one our camera can provide. If we choose any size which
extends the picture range of the camera, GStreamer will fail to start with an output like this:

ERROR: from element /pipeline0/v4l2src0: Could not negotiate format

5.11.2 Manipulate Input Frame Size with Plugins

Normally the onboard framebuffer device has smaller size than the picture captured by the camera. Because of
that, only a part of the captured video might be visible, starting at the upleft corner, on the display. To get the
picture we actually want on our display, we can use various plugins:

• we can crop the videosignal using the videocrop plugin

~# gst-launch v4l2src ! video/x-raw-gray \
�

�

�

�
Enter

> ! videocrop left=250 right=250 top=80 bottom=80 \
�

�

�

�
Enter

> ! ffmpegcolorspace ! fbdevsink
Will ”chop out” 500 pixel in the horizontal and 160 pixel in the vertical direction of the input frame, so that
we will get a 250x320 sized frame which is positioned in the central of the input frame. This command line
will work with an MT9v022 camera, which provides a 752(H)x480(V) sized frame at default and a Hitachi
tx09d70vm1cca, which is 240(H)x240(V) in size. We should consult the datasheet of our display and our
camera to find out the correct crop parameter for the camera kit.

• If we’d rather prefer not to crop out regions of the input frame, we can use the videoscale plugin to
resize the input frame

~# gst-launch v4l2src ! video/x-raw-gray \
�

�

�

�
Enter

> ! ffmpegcolorspace ! videoscale ! video/x-raw-yuv,width=320,height=240 ! \
�

�

�

�
Enter

> ! ffmpegcolorspace ! fbdevsink
With this command we can resize the video frame to 320x240. Notice:

– Unlike thevideocropplugin, videoscale cannot process rawdata provided byv4l2srcdirectly.
So we put a ffmpegcolorspace between the v4l2src and videoscale.

– Aspect ration in the resized frame should be proportional to the original size. Otherwise we might
get a disorted image.

30

5 Accessing Peripherals

5.11.3 Manipulate Picture’s Orientation

Further we can flip and rotate our video with the videoflip plugin. We take the command above as example:

~# gst-launch v4l2src ! video/x-raw-gray \
�

�

�

�
Enter

> ! ffmpegcolorspace \
�

�

�

�
Enter

> ! videoscale ! video/x-raw-yuv,width=320,height=240 \
�

�

�

�
Enter

> ! videoflip method=clockwise \
�

�

�

�
Enter

> ! ffmpegcolorspace ! fbdevsink

The addtional videoflip plugin in the pipeline flips the video 90 degrees clockwise.

5.11.4 Using other Sinks Than the Framebuffer

Beside the local framebuffer there are additional locations where to show the video stream.

ximagesink and xvimagesink

If the support for X protocols is turned on in our OSELAS.BSP-Phytec-phyCORE-12, we can use it to display our
camera streamon a remote host, which runs a common X server like X.Org. To do this we run the following steps:

On our host:

user@host ~ xhost +
access control disabled, clients can connect from any host

Note: With this command we will grant access from any X-Clients in our network to our local
X-Server. This could be a security issue. Hence we might probably want to consult our system
administrator first before doing this.

On target:

~# export DISPLAY=[IP of our host in here]:0

Now any X-related application started on our target will be shown on our host and we can start our GStreamer
with the ximagesink

~# gst-launch v4l2src ! video/x-raw-gray ! ffmpegcolorspace ! ximagesink

Notice that displaying our videostream like this we might get very low framerate due to high network load.

31

5 Accessing Peripherals

udpsink

With GStreamer we can also stream our video with various streaming protocols through the network. However
we have to encode the stream with a video codec first. Currently only hardware encoding is supported. We only
can use this feature if our phyCORE-i.MX31 provides a video processing unit.
If our target system supports such a feature, we can start streaming on the target with following command:

~# gst-launch v4l2src \
�

�

�

�
Enter

> ! video/x-raw-gray ! ffmpegcolorspace \
�

�

�

�
Enter

> ! mfw_vpuencoder \codec-type=std_avc bitrate=32767 gopsize=10 ! rtph264pay \
�

�

�

�
Enter

> ! udpsink host=[HOST IP ADDRESS] port=5555

On the host we can use the following command to decode this video stream:

user@host ~ gst-launch udpsrc port=5555 \
�

�

�

�
Enter

> caps = "application/x-rtp, media=(string)video" ! rtph264depay \
�

�

�

�
Enter

> ! ffdec_h264 ! xvimagesink

5.12 SPI Master

The phyCORE-i.MX31 board supports an SPI bus, based on the i.MX31’s integrated SPI controller. It is connected
to the onboard devices using the standard kernel method, so all methods described here are not special to the
phyCORE-i.MX31.

Connecteddevice canbe found in the sysfs at thepath/sys/bus/spi/devices. It dependson the correspond-
ing SPI slave device driver if it provides access to the SPI salve device through this way (sysfs), or any different
kind of API.

This BSP currently supports one dedicated SPI bus. Its used to control the external so called PMIC, the main
peripheral controller.

5.13 Touch

A simple test of this feature can be run with:

~# ts_calibrate

to calibrate the touch and with:

~# ts_test

to do a simple application using this feature.

32

5 Accessing Peripherals

5.14 I²C Master

The i.MX31 processor based phyCORE-i.MX31 supports a dedicated I²C controller onchip. The kernel supports
this controller as a master controller.

Additional I²Cdevicedrivers canuse the standard I²CdeviceAPI to gain access to their devices through thismaster
controller. For further information about the I²C framework seeDocumentation/i2c in the kernel source tree.

5.14.1 I²C Realtime Clock RTC8564

Due to the Real Time Clock framework of the kernel the RTC8564 clock chip can be accessed using the same tools
as for any other real time clock.

Date and time can be manipulated with the hwclock tool, using the -w (systohc) and -s (hctosys) options. For
more information about this tool refer to the manpage of hwclock.

OSELAS.BSP-Phytec-phyCORE-12 tries to set up the date at system startup. If there was a powerfail hwclockwill
state:

pcf8564 1-0051: low voltage detected, date/time is not reliable.
pcf8564 1-0051: retrieved date/time is not valid.

In this case set the date manually (see man date) and run hwclock -w -u to store the new date into the
RTC8564.

5.14.2 I²C Device 24W32

This device is a 4 kiB non-volatile memory for general purpose usage.

This type of memory is accessible through the sysfs filesystem. To read the EEPROM content simply open() the
entry /sys/bus/i2c/devices/1-0052/eeprom and use fseek() and read() to get the values.

5.15 Framebuffer

This driver gains access to the display via device node /dev/fb0. For this BSP the Hitachi TX09D70VM1CCA
display with a resolution of 240x320 is supported.

A simple test of this feature can be run with:

~# fbtest

This will show various pictures on the display.

You can check your framebuffer resolution with the command

~# fbset

33

5 Accessing Peripherals

NOTE: fbset cannot be used to change display resolution or color depth. Depending on the framebuffer device
different kernel command line are mostly needed to do this. Please refer to the manual of your display driver for
more details.

Earlier system revisions are using the SHARP LQ035Q7DH06 display instead. To continue using
this display U-Boot’s environment or the BSP must be changed.

Inorder to continueusing thepredecessordisplay thekernelmust be setupwith thevideo=mx3fb:Sharp-LQ035Q7
parameter.

If the target system is already configured, this parameter can be changed from inside the running U-Boot: Modify
the file /env/config and replace the current video=mx3fb:TX090with the string shown above.

Tomodify theBSP tomake this changepersistantwe can simplymodify theconfigs/phyCORE-i.MX31-1.99.12-3/u-boot-env/config.in
and also replace the video=mx3fb:TX090 by the video=mx3fb:Sharp-LQ035Q7 string. With this modifica-
tion targe’s auto setup will do the right thing.

Note: To use both USB connectors for host usage, the kernel parameter pcm037_otg_mode=host must be
given. Without this kernel parameter the device connector defauls to device mode.

5.16 USB Host Controller

The i.MX31 CPU embedds a USB 2.0 EHCI controller that is also able to handle low and full speed devices (USB
1.1).

The OSELAS.BSP-Phytec-phyCORE-12 includes support for mass storage devices and keyboards. Other USB re-
lated device drivers must be enabled in the kernel configuration on demand.

Due to udev, connecting variousmass storage devices get unique IDs and can be found in /dev/disks/by-id.
These IDs can be used in /etc/fstab to mount different USB memory devices in a different way.

5.17 OneWire Interface

”There is something like 1W existing in this universe.”

As the real support for this kind of devices is currently very broken, only a direct access is provided. Any detected
1W device will be mapped to the sysfs filesystem.

For example a connected temperature sensor could be accessed via this entry:

/sys/bus/w1/devices/10-000801018ed7/w1_slave

A simple cat command can give you the follwing output:

root@phyCORE:~ cat /sys/bus/w1/devices/10-000801018ed7/w1_slave
2e 00 4b 46 ff ff 0e 10 91 : crc=91 YES
2e 00 4b 46 ff ff 0e 10 91 t=22875

34

5 Accessing Peripherals

5.18 MMC/SD Card

The phyCORE-i.MX31 supports Secure Digital Cards andMulti Media Cards in conjunction with its PCM970 to be
used as general purpose blockdevices. These devices can be used in the same way as any other blockdevice.

These kind of devices are hot pluggable, so you must pay attention not to unplugg the device
while its still mounted. This may result in data loss.

After inserting an MMC/SD card, the kernel will generate new device nodes in dev/. The full device can be
reached via its /dev/mmcblk0 device node, MMC/SD card partitions will occure in the following way:

/dev/mmcblk0pY

Y counts as the partition number starting from 1 to the max count of partitions on this device.

Note: These partition device nodes will only occure if the card contains a valid partition table (”harddisk” like
handling). If it does not contain one, the whole device can be used for a filesystem (”floppy” like handling). In
this case /dev/mmcblk0must be used for formatting and mounting.

The partitions can be formatted with any kind of filesystem and also handled in a standard manner, e.g. the
mount and umount command work as expected.

5.19 CAN Bus

The phyCORE-i.MX31 provides a CAN feature, which is supported by drivers using the (currently work-in-
progress) proposed Linux standard CAN framework ”Socket-CAN”. Using this framework, CAN interfaces can
be programmed with the BSD socket API.

Configuration happens within the script /etc/network/can-pre-up. This script will be called when
/etc/init.d/networking is running at system start up. To change default used bitrates on the target change
the variables CAN_0_BITRATE and/or CAN_1_BITRATE in /etc/network/can-pre-up.

For a persistent change of the default bitrates change the local projectroot/etc/network/can-pre-up
instead and rebuild the BSP.

The Socket-CAN API is still work in progress and was submitted to the upstream kernel main-
tainers in part only.

5.19.1 About Socket-CAN

The CAN (Controller Area Network1) bus offers a low-bandwidth, prioritised message fieldbus for communica-
tion between microcontrollers. Unfortunately, CAN was not designed with the ISO/OSI layer model in mind, so
most CAN APIs available throughout the industry don’t support a clean separation between the different logical
protocol layers, like for example known from ethernet.

The Socket-CAN framework for Linux extends the BSD socket API concept towards CAN bus. It consists of

1ISO 11898/11519

35

5 Accessing Peripherals

• a core part (candev.ko)

• chip drivers (e. g. mscan, sja1000 etc.)

So in order to start working with CAN interfaces we’ll have to make sure all necessary drivers are loaded.

Starting and Configuring Interfaces from the Command Line

If all drivers are present in the kernel, ”ifconfig -a” shows which network interfaces are available; as Socket-CAN
chip interfaces are normal Linux network devices (with some additional features special to CAN), not only the
ethernet devices can be observed but also CAN ports.

For this example, we are only interested in the first CAN port, so the information for can0 looks like

~# ifconfig can0
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

inet addr:127.42.23.180 Mask:255.255.255.0
UP RUNNING NOARP MTU:16 Metric:1
RX packets:35948 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10000
RX bytes:243744 (238.0 KiB) TX bytes:2 (2.0 B)
Interrupt:145 Base address:0x900

The output contains the usual parameters also shown for ethernet interfaces, so not all of these are necessarily
relevant for CAN (for example the MAC address). These parameters contain useful information:

Field Description

can0 Interface Name
NOARP CAN cannot use ARP protocol
MTU Maximum Transfer Unit, always 8
RX packets Number of Received Packets
TX packets Number of Transmitted Packets
RX bytes Number of Received Bytes
TX bytes Number of Transmitted Bytes
errors... Bus Error Statistics

Table 5.1: CAN interface information

Inferfaces shown by the ”ifconfig -a” command can be configured with canconfig. This command adds CAN
specific configuration possibilities for network interfaces, similar to for example iwconfig for wireless ethernet
cards.

The baudrate for can0 can now be changed:

~# canconfig can0 bitrate 250000

and the interface is started with

~# ifconfig can0 up

36

5 Accessing Peripherals

Using the CAN Interfaces from the Command Line

After successfully configuring the local CAN interface and attaching some kind of CAN devices to this physical
bus, we can test this connection with command line tools.

The tools cansend and candump are dedicated to this purpose.

To send a simple CANmessage with ID 0x20 and one data byte of value 0xAA just enter:

~# cansend can0 --identifier=0x20 0xAA

To receive CANmessages run the candump command:

~# candump can0
interface = can0, family = 29, type = 3, proto = 0
<0x020> [1] aa

The output of candump shown in this example was the result of running the cansend example above on a dif-
ferent machine.

See cansend’s and candump’s manual pages for further information about using and options.

37

6 Special Notes

6.1 Analysing the CAN Bus Data Transfer

The OSELAS.BSP-Phytec-phyCORE-12 BSP comes with the standard pcap library and tcpdump tool. Both are
capable of analyzing CAN data transfer wich includes time stamping.

We set up the CAN interface(s) as usual and use it in our application. With tcpdump we can sniff at any point of
time the data transferred on the CAN line.

To do so, we simply start tcpdump:

~# tcpdump -i can0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on can0, link-type LINUX_CAN (Linux CAN), capture size 68 bytes

Whenever there is any traffic on the line, tcpdumpwill log it to stdout. Wewill generate some traffic by using the
cansend command:

~# cansend can0 -i 0x12 0x0f 0xf0 0x10 0x01

For this data, tcpdumpwill output:

00:15:52.482066 CAN Out ID:00000012 PL_LEN:4 PAYLOAD: 0x0f 0xf0 0x10 0x01

The log tcpdump generates consist of six fields:

1. 00:15:52.482066 is the timestamp this data was on the line. Its format is HH:MM:SS:TTTTTT, with
TTTTTT as second’s fraction

2. CAN interface type

3. Outmessage’S data direction on this interface

4. ID:00000012 CANmessage ID

5. PL_LEN:4 byte count of message data

6. PAYLOAD: 0x0f 0xf0 0x10 0x01 the payload data

Some notes:

• The data direction field could be Out or In
• The CANmessage ID encodes some additional info into higher bit values:

– Bit 31 encodes an extended frame. If this bit is set, an extended message frame was on the line

– Bit 30 encodes an RTR frame. If this bit is set, a remote transmission message frame was on the line

The message ID resides in the lower bits of this field

• The PAYLOAD field could be empty, when there were no data elements in the message

38

6 Special Notes

6.2 Using the NAND Flash for Root Filesystem

To use the phyCORE-i.MX31 NANDmemory for root filesystem usage, some preparations are required.

1. Partitioning the NANDmemory (optional step)

2. Erasing that part of the NANDmemory that should act as the root file partition

3. Generating the root filesystem image for writing into the NANDmemory

6.2.1 Partitioning

If the NAND memory is the sole flash memory on the phyCORE-i.MX31, we must provide a so called mtdparts
kernel parameter to describe the partition layout of the NAND memory. This parameter will be forwarded by
U-Boot to the starting kernel.

All we need in this case is a kernel parameter like that:
mtdparts=\"NAND 64MiB 3,3V 8-bit:128k(uboot)ro,128k(ubootenv),2M(kernel),-(root)\"

If there is an additional flashmemory on the phyCORE-i.MX31 in use (and also partitioned), this kernel parameter
may already exist. In this case we must extend the line with the new NAND partition description:
mtdparts=<old-description>;

\"NAND 64MiB 3,3V 8-bit:128k(uboot)ro,128k(ubootenv),2M(kernel),-(root)\"

Note: Before continuing with the next step, the system must be booted with the new or extended mtdparts
kernel command line.

6.2.2 Erasing the Root Partition

If not already done the dedicated root partition must be erased before any new data can be written. This will be
done at target side by

~# flash_eraseall /dev/mtd7

Note: Do not use the flash_eraseall command with the -j command line option for NAND memories. -j
is intended only to be used for NOR memories!

Now this partition is ready for use. The JFFS2 filesystem is able to use this erased part of the NANDmemory. So
we could mount this partition and store some data on it. But we want to use it as a root filesystem the next time
we boot this system. So we need many files to store on this partition. It’s not a good idea to do it manually. We
let PTXdist generate an image that includes all required directories and files.

6.2.3 Writing a Root Filesystem Image

Due to the JFFS2 filesystem usage and different NANDs the image must meet some physical restrictions. For
example the erase block size of the NAND must be known while generating the image. Some parameters must
be set up in the PTXdist menus, before the image can be generated.

39

6 Special Notes

We run ptxdist platformconfig, navigate to image creation options, Generate
images/root.jffs2 and change the Erase Block Size to the sector size of the used NAND mem-
ory. In the case of phyCORE-i.MX31 this sector size is 16384 (=16 kiB). We also must enter a -n entry into extra
arguments passed to mkfs.jffs2 to generate a proper image for NANDmemory usage.

After changing the menu settings a ptxdist images will generate the new root filesystem image. We have to
transfer this image now to the target via our favoured method (NFS, FTP or something else). Writing this image
to the NANDmemory is easily done by:

~# nandwrite -j /dev/mtd7 <root-filesystem-image>

6.2.4 Booting into the NAND Based Root Filesystem

Tomake the starting kernel use the new NAND partition for its root filesystem, we only have to change the root
kernel parameter to:

root=/dev/mtdblock7

To be successful with this step, the kernel itself must be prepared:

• the driver to access the NANDmemory must be statically linked

• the JFFS2 filesystem support must be statically linked

• a second root filesystem related kernel parameter must be also present: rootfstype=jffs2

40

7 Getting help

Below is a list of locations where you can get help in case of trouble. For questions how to do something special
with PTXdist or general questions about Linux in the embedded world, try these.

7.1 Mailing Lists

7.1.1 About PTXdist in Particular

This is an English language public mailing list for questions about PTXdist. See

http://www.pengutronix.de/mailinglists/index_en.html

how to subscribe to this list. If you want to search through the mailing list archive, visit

http://www.mail-archive.com/

and search for the list ptxdist. Please note again that this mailing list is just related to the PTXdist as a software.
For questions regarding your specific BSP, see the following items.

7.1.2 About Embedded Linux in General

This is a German language public mailing list for general questions about Linux in embedded environments. See

http://www.pengutronix.de/mailinglists/index_de.html

how to subscribe to this list. Note: You can also send mails in English.

7.2 News Groups

7.2.1 About Linux in Embedded Environments

This is an English newsgroup for general questions about Linux in embedded environments.

comp.os.linux.embedded

7.2.2 About General Unix/Linux Questions

This is a German newsgroup for general questions about Unix/Linux programming.

de.comp.os.unix.programming

41

http://www.pengutronix.de/mailinglists/index_en.html
http://www.mail-archive.com/
http://www.pengutronix.de/mailinglists/index_de.html

7 Getting help

7.3 Chat/IRC

About PTXdist in particular

irc.freenode.net:6667

Create a connection to the irc.freenode.net:6667 server and enter the chatroom #ptxdist. This is an English
room to answer questions about PTXdist. Best time to meet somebody there is at European daytime.

7.4 phyCORE-i.MX31 Support Mailing List

OSELAS.Phytec@pengutronix.de

This is an english language public maillist for all BSP related questions specific to Phytec’s hardware. See web
site

http://www.pengutronix.de/mailinglists/index_en.html

7.5 Commercial Support

You can order immediate support through customer specific mailing lists, by telephone or also on site. Ask our
sales representative for a price quotation for your special requirements.

Contact us at:

Pengutronix
Peiner Str. 6-8
31137 Hildesheim

Germany
Phone: +49 - 51 21 / 20 69 17 - 0
Fax: +49 - 51 21 / 20 69 17 - 55 55

or by electronic mail:

sales@pengutronix.de

42

http://www.pengutronix.de/mailinglists/index_en.html
mailto:sales@pengutronix.de

	OSELAS Quickstart for Phytec phyCORE-i.MX31
	Getting a working Environment
	Download Software Components
	PTXdist Installation
	Main Parts of PTXdist
	Extracting the Sources
	Prerequisites
	Configuring PTXdist

	Toolchains
	Using Existing Toolchains
	Building a Toolchain
	Building the OSELAS.Toolchain for OSELAS.BSP-Phytec-phyCORE-12
	Protecting the Toolchain

	Building phyCORE-i.MX31's root filesystem
	Extracting the Board Support Package
	Selecting a Software Platform
	Selecting a Hardware Platform
	Selecting a Toolchain
	Building the Root Filesystem
	Building an Image

	phyCORE-i.MX31 preparation
	Updating the Bootloader
	Updating from a U-Boot-v1
	Updating from a U-Boot-v2

	Booting Linux
	Target Side Preparation
	Stand-Alone Booting Linux
	Development Host Preparations
	Preparations on the Embedded Board
	Booting the Embedded Board

	Remote-Booting Linux
	Development Host Preparations
	Preparations on the Embedded Board
	Booting the Embedded Board

	Accessing Peripherals
	NOR Flash
	NAND Flash
	NAND Usage
	NAND Preparation

	SRAM Memory
	Serial TTYs
	Network
	Camera Interface
	Using the Camera Support
	Turn on Camera Support in System
	Accessing Camera with GStreamer
	Basic Usage of GStreamer
	Simple Usage Example
	Simple Monochrome Usage Example
	Simple Colour Usage Example

	Advanced Usage of GStreamer
	Manually Setting the Frame Rate and Framesize
	Manipulate Input Frame Size with Plugins
	Manipulate Picture's Orientation
	Using other Sinks Than the Framebuffer

	SPI Master
	Touch
	I²C Master
	I²C Realtime Clock RTC8564
	I²C Device 24W32

	Framebuffer
	USB Host Controller
	OneWire Interface
	MMC/SD Card
	CAN Bus
	About Socket-CAN

	Special Notes
	Analysing the CAN Bus Data Transfer
	Using the NAND Flash for Root Filesystem
	Partitioning
	Erasing the Root Partition
	Writing a Root Filesystem Image
	Booting into the NAND Based Root Filesystem

	Getting help
	Mailing Lists
	About PTXdist in Particular
	About Embedded Linux in General

	News Groups
	About Linux in Embedded Environments
	About General Unix/Linux Questions

	Chat/IRC
	phyCORE-i.MX31 Support Mailing List
	Commercial Support

